Myasthenia gravis: past, present, and future.

Myasthenia gravis (MG) is an autoimmune syndrome caused by the failure of neuromuscular transmission, which results from the binding of autoantibodies to proteins involved in signaling at the neuromuscular junction (NMJ). These proteins include the nicotinic AChR or, less frequently, a muscle-specific tyrosine kinase (MuSK) involved in AChR clustering. Much is known about the mechanisms that maintain self tolerance and modulate anti-AChR Ab synthesis, AChR clustering, and AChR function as well as those that cause neuromuscular transmission failure upon Ab binding. This insight has led to the development of improved diagnostic methods and to the design of specific immunosuppressive or immunomodulatory treatments.

[1]  M. Walker Case Showing the Effect of Prostigmin on Myasthenia Gravis , 1935, Proceedings of the Royal Society of Medicine.

[2]  H. Link,et al.  Mucosal tolerance: a two-edged sword to prevent and treat autoimmune diseases. , 1997, Clinical immunology and immunopathology.

[3]  R. Hohlfeld,et al.  Autoimmune human T lymphocytes specific for acetylcholine receptor , 1984, Nature.

[4]  F. Shi,et al.  Natural killer cells determine the outcome of B cell–mediated autoimmunity , 2000, Nature Immunology.

[5]  I. Spreadbury,et al.  AChR phosphorylation and indirect inhibition of AChR function in seronegative MG , 2002, Neurology.

[6]  A. Engel,et al.  Ultrastructural Localization of the Terminal and Lytic Ninth Complement Component (C9) at the Motor End‐plate in Myasthenia Gravis , 1979, Journal of neuropathology and experimental neurology.

[7]  D. Sanders,et al.  Steroids have an important role , 2002 .

[8]  A. Saoudi,et al.  Estrogen Enhances Susceptibility to Experimental Autoimmune Myasthenia Gravis by Promoting Type 1-Polarized Immune Responses1 , 2005, The Journal of Immunology.

[9]  P. Christadoss,et al.  Induction of Myasthenia Gravis in HLA Transgenic Mice by Immunization with Human Acetylcholine Receptors , 2003, Annals of the New York Academy of Sciences.

[10]  J. D. Porter,et al.  Conservation of Synapse‐Signaling Pathways at the Extraocular Muscle Neuromuscular Junction , 2002, Annals of the New York Academy of Sciences.

[11]  J. Keesey,et al.  “Crisis” in myasthenia gravis: An historical perspective , 2002, Muscle & nerve.

[12]  B. Katirji,et al.  Electrodiagnostic approach to the patient with suspected neuromuscular junction disorder. , 2002, Neurologic clinics.

[13]  J. Michelson,et al.  Myasthenic antibodies cross-link acetylcholine receptors to accelerate degradation. , 1978, The New England journal of medicine.

[14]  J. Howard,et al.  T cell recognition of muscle acetylcholine receptor in ocular myasthenia gravis , 2000, Journal of Neuroimmunology.

[15]  P. Christadoss,et al.  Treatment of experimental autoimmune myasthenia gravis with recombinant human tumor necrosis factor receptor Fc protein , 2002, Journal of Neuroimmunology.

[16]  J. Newsom-Davis,et al.  Development of a Thymectomy Trial in Nonthymomatous Myasthenia Gravis Patients Receiving Immunosuppressive Therapy , 2003, Annals of the New York Academy of Sciences.

[17]  S. Cohen-Kaminsky,et al.  Prospects for a T-cell receptor vaccination against myasthenia gravis , 2005, Expert review of vaccines.

[18]  R. Barohn,et al.  Evaluation of myosin-reactive antibodies from a panel of myasthenia gravis patients. , 1994, Clinical immunology and immunopathology.

[19]  P. Whiting,et al.  Acetycholine receptor antibody characteristics in myasthenia gravis Fractionation of α-Bungarotoxin binding site antibodies and their relationship to IgG subclass , 1983, Journal of Neuroimmunology.

[20]  B. Xiao,et al.  Dendritic cells exposed in vitro to TGF‐β1 ameliorate experimental autoimmune myasthenia gravis , 2002, Clinical and experimental immunology.

[21]  A. Vincent,et al.  Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies , 2001, Nature Medicine.

[22]  P. Christadoss,et al.  Myasthenia gravis patients with low plasma IL-6 and IFN-γ benefit from etanercept treatment , 2005 .

[23]  R. Horton,et al.  The 'embryonic' gamma subunit of the nicotinic acetylcholine receptor is expressed in adult extraocular muscle , 1993, Neurology.

[24]  L. Moiola,et al.  Epitopes on the beta subunit of human muscle acetylcholine receptor recognized by CD4+ cells of myasthenia gravis patients and healthy subjects. , 1994, The Journal of clinical investigation.

[25]  M. Pescovitz Rituximab, an Anti‐CD20 Monoclonal Antibody: History and Mechanism of Action , 2006, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[26]  J. Atkinson,et al.  Membrane cofactor protein of complement is present on human fibroblast, epithelial, and endothelial cells. , 1989, The Journal of clinical investigation.

[27]  H. Kaminski,et al.  Molecular architecture of the neuromuscular junction , 2006, Muscle & nerve.

[28]  R. Pirskanen,et al.  Acetylcholine receptor-reactive T cells in myasthenia gravis: Evidence for the involvement of different subpopulations of T helper cells , 1994, Journal of Neuroimmunology.

[29]  J. Ravetch,et al.  Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. , 2001, Science.

[30]  H. Link,et al.  Interferon-gamma-modified dendritic cells suppress B cell function and ameliorate the development of experimental autoimmune myasthenia gravis. , 2004, Clinical and experimental immunology.

[31]  J. Aarli Titin, thymoma, and myasthenia gravis. , 2001, Archives of neurology.

[32]  P. Christadoss,et al.  Mutation at I-A beta chain prevents experimental autoimmune myasthenia gravis , 2004, Immunogenetics.

[33]  I. Bernard,et al.  Experimental autoimmune myasthenia gravis may occur in the context of a polarized Th1- or Th2-type immune response in rats. , 1999, Journal of immunology.

[34]  J. Wolinsky,et al.  Immune studies in human immunodeficiency virus infection with myasthenia gravis , 1990, Neurology.

[35]  P. Christadoss C5 gene influences the development of murine myasthenia gravis. , 1988, Journal of immunology.

[36]  Zeng-Yu Wang,et al.  T-cell recognition of muscle acetylcholine receptor subunits in generalized and ocular myasthenia gravis , 1998, Neurology.

[37]  Chuan-zhen Lu,et al.  Increase of circulating CD4+CD25+ T cells in myasthenia gravis patients with stability and thymectomy. , 2004, Clinical immunology.

[38]  M. Shenoy,et al.  The role of major histocompatibility complex genes in myasthenia gravis and experimental autoimmune myasthenia gravis pathogenesis. , 1994, Advances in neuroimmunology.

[39]  K. Shigemoto,et al.  MuSK antibodies in AChR Ab-seropositive MG vs AChR Ab-seronegative MG , 2004, Neurology.

[40]  G. Patterson,et al.  A randomized, placebo-controlled trial of complement inhibition in ischemia-reperfusion injury after lung transplantation in human beings. , 2005, The Journal of thoracic and cardiovascular surgery.

[41]  John Newsom-Davis,et al.  A randomized double‐blind trial of prednisolone alone or with azathioprine in myasthenia gravis , 1998, Neurology.

[42]  J. Simpson Myasthenia Gravis: A New Hypothesis , 1960 .

[43]  P. Christadoss,et al.  The Th2 cytokine IL-4 is not required for the progression of antibody-dependent autoimmune myasthenia gravis. , 1998, Journal of immunology.

[44]  R. Tindall,et al.  A Clinical Therapeutic Trial of Cyclosporine in Myasthenia Gravis a , 1993, Annals of the New York Academy of Sciences.

[45]  J. Sonett,et al.  Thymectomy in the management of myasthenia gravis. , 2004, Seminars in neurology.

[46]  J. Bixby,et al.  Agrin orchestrates synaptic differentiation at the vertebrate neuromuscular junction , 1998, Trends in Neurosciences.

[47]  S. Meri,et al.  Distribution of protectin (CD59), a complement membrane attack inhibitor, in normal human tissues. , 1991, Laboratory investigation; a journal of technical methods and pathology.

[48]  D B Sanders,et al.  Myasthenia gravis: recommendations for clinical research standards. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. , 2000, Neurology.

[49]  Y. Abe,et al.  Induction of myasthenia by immunization against muscle-specific kinase. , 2006, The Journal of clinical investigation.

[50]  H. Hartung,et al.  Plasma exchange in neuroimmunological disorders: part 2. Treatment of neuromuscular disorders. , 2006, Archives of neurology.

[51]  J. Newsom-Davis,et al.  Therapy in Myasthenia Gravis and Lambert-Eaton Myasthenic Syndrome , 2003, Seminars in neurology.

[52]  H. Kaminski,et al.  Markedly enhanced susceptibility to experimental autoimmune myasthenia gravis in the absence of decay-accelerating factor protection. , 2002, The Journal of clinical investigation.

[53]  A. Vandenbark,et al.  TCR peptide therapy decreases the frequency of encephalitogenic T cells in the periphery and the central nervous system , 1992, Journal of Neuroimmunology.

[54]  P. Christadoss,et al.  Role of IL-5 during primary and secondary immune response to acetylcholine receptor , 2002, Journal of Neuroimmunology.

[55]  H. Link,et al.  Interferon‐γ‐modified dendritic cells suppress B cell function and ameliorate the development of experimental autoimmune myasthenia gravis , 2004 .

[56]  A. Engel,et al.  Mechanisms of acetylcholine receptor loss from the neuromuscular junction. , 1982, Ciba Foundation symposium.

[57]  R. Ulevitch,et al.  Role of complement in the pathogenesis of experimental autoimmune myasthenia gravis , 1978, The Journal of experimental medicine.

[58]  P. Christadoss,et al.  Resistance to Experimental Autoimmune Myasthenia Gravis in IL-6-Deficient Mice Is Associated with Reduced Germinal Center Formation and C3 Production1 , 2002, The Journal of Immunology.

[59]  P. Karachunski,et al.  Prevention of experimental myasthenia gravis by nasal administration of synthetic acetylcholine receptor T epitope sequences. , 1997, The Journal of clinical investigation.

[60]  G. Stoll,et al.  Increased serum levels of the interferon-&ggr;–inducing cytokine interleukin-18 in myasthenia gravis , 2002, Neurology.

[61]  A. Vincent,et al.  Detection and characterization of MuSK antibodies in seronegative myasthenia gravis , 2004, Annals of neurology.

[62]  S. Fuchs,et al.  Overexpression of IFN-Induced Protein 10 and Its Receptor CXCR3 in Myasthenia Gravis1 , 2005, The Journal of Immunology.

[63]  L Matis,et al.  Pharmacology and biological efficacy of a recombinant, humanized, single-chain antibody C5 complement inhibitor in patients undergoing coronary artery bypass graft surgery with cardiopulmonary bypass. , 1999, Circulation.

[64]  L. Rowland Controversies about the treatment of myasthenia gravis. , 1980, Journal of neurology, neurosurgery, and psychiatry.

[65]  John C. Keesey,et al.  Clinical evaluation and management of myasthenia gravis , 2004, Muscle & nerve.

[66]  H. Link,et al.  Protective potential of experimental autoimmune myasthenia gravis in Lewis rats by IL-10-modified dendritic cells , 2004, Neurobiology of Disease.

[67]  J. Howard,et al.  Immunodominant regions for T helper-cell sensitization on the human nicotinic receptor alpha subunit in myasthenia gravis. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[68]  W. L. Nastuk,et al.  Search for a neuromuscular blocking agent in the blood of patients with myasthenia gravis. , 1959, The American journal of medicine.

[69]  B. Scallon,et al.  Anti-TNF-α Antibodies Suppress the Development of Experimental Autoimmune Myasthenia Gravis , 2002 .

[70]  P. Christadoss,et al.  Myasthenia gravis patients with low plasma IL-6 and IFN-gamma benefit from etanercept treatment. , 2005, Journal of autoimmunity.

[71]  Richard J. Jones,et al.  Treatment of refractory myasthenia: “Rebooting” with high‐dose cyclophosphamide , 2003, Annals of neurology.

[72]  J. Montoro,et al.  Benefits of FK506 (tacrolimus) for residual, cyclosporin- and prednisone-resistant myasthenia gravis: one-year follow-up of an open-label study , 2005, Clinical Neurology and Neurosurgery.

[73]  R. Hohlfeld,et al.  Induction of HLA-DR expression on human myoblasts with interferon-gamma. , 1990, The American journal of pathology.

[74]  F. Shi,et al.  Tumor necrosis factor receptor-1 is critically involved in the development of experimental autoimmune myasthenia gravis. , 2000, International immunology.

[75]  E. Rieber,et al.  Treatment of myasthenia gravis with anti‐CD4 antibody , 1994, Neurology.

[76]  M. Sela,et al.  Immunomodulation by a dual altered peptide ligand of autoreactive responses to the acetylcholine receptor of peripheral blood lymphocytes of patients with myasthenia gravis. , 2004, Human immunology.

[77]  H. Soreq,et al.  Acetylcholinesterase — new roles for an old actor , 2001, Nature Reviews Neuroscience.

[78]  R. Greenlee,et al.  Preliminary results of a double-blind, randomized, placebo-controlled trial of cyclosporine in myasthenia gravis. , 1987, The New England journal of medicine.

[79]  H. Soreq,et al.  The role of readthrough acetylcholinesterase in the pathophysiology of myasthenia gravis , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[80]  A. Mamalaki,et al.  Specific immunoadsorption of the autoantibodies from myasthenic patients using the extracellular domain of the human muscle acetylcholine receptor α-subunit. Development of an antigen-specific therapeutic strategy , 2005, Journal of Neuroimmunology.

[81]  P. Karachunski,et al.  Absence of IFN-γ or IL-12 Has Different Effects on Experimental Myasthenia Gravis in C57BL/6 Mice1 , 2000, The Journal of Immunology.

[82]  Marsteller Hb The first American case of myasthenia gravis. , 1988 .

[83]  R. Barohn,et al.  Myasthenia gravis , 2000, Neurology.

[84]  A. Vincent,et al.  Low frequency of MuSK antibody in generalized seronegative myasthenia gravis among Chinese , 2004, Neurology.

[85]  A. Vincent,et al.  Neuromuscular junction autoimmune disease: muscle specific kinase antibodies and treatments for myasthenia gravis , 2005, Current opinion in neurology.

[86]  J. Lindstrom,et al.  Monoclonal antibodies as probes of acetylcholine receptor structure. 2. Binding to native receptor. , 1981, Biochemistry.

[87]  A. Saoudi,et al.  Functional defect of regulatory CD4(+)CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis. , 2005, Blood.

[88]  P. Christadoss,et al.  Cooperation of Invariant NKT Cells and CD4+CD25+ T Regulatory Cells in the Prevention of Autoimmune Myasthenia1 , 2005, The Journal of Immunology.

[89]  J. Hemmen,et al.  Cytokine-modulated regulation of helper T cell populations. , 2000, Journal of theoretical biology.

[90]  R. Longhi,et al.  Oral administration of an immunodominant T-cell epitope downregulates Th1/Th2 cytokines and prevents experimental myasthenia gravis. , 1999, The Journal of clinical investigation.

[91]  E. Ciafaloni Mycophenolate mofetil and myasthenia gravis , 2005 .

[92]  P. Christadoss,et al.  HLA-DQ6 transgenic mice resistance to experimental autoimmune myasthenia gravis is linked to reduced acetylcholine receptor-specific IFN-gamma, IL-2 and IL-10 production. , 2001, Journal of autoimmunity.

[93]  G. Biesecker,et al.  Inhibition of acute passive transfer experimental autoimmune myasthenia gravis with Fab antibody to complement C6. , 1989, Journal of immunology.

[94]  N. Robertson Enumerating neurology. , 2000, Brain : a journal of neurology.

[95]  S. Fuchs,et al.  Suppression of experimental myasthenia gravis, a B cell‐mediated autoimmune disease, by blockade of IL‐18 , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[96]  H. Oosterhuis,et al.  Myasthenia gravis and myasthenic syndromes. , 1992, Current opinion in neurology and neurosurgery.

[97]  V. Nussenzweig,et al.  Identification of the complement decay-accelerating factor (DAF) on epithelium and glandular cells and in body fluids , 1987, The Journal of experimental medicine.

[98]  J. Patrick,et al.  Autoimmune Response to Acetylcholine Receptor , 1973, Science.

[99]  Hanns Lochmüller,et al.  What’s in the serum of seronegative MG and LEMS? , 2002, Neurology.

[100]  A. Vincent,et al.  Soluble complement receptor 1 (sCR1) protects against experimental autoimmune myasthenia gravis , 1996, Journal of Neuroimmunology.

[101]  R. Garman,et al.  Subcutaneous administration of T-epitope sequences of the acetylcholine receptor prevents experimental myasthenia gravis , 1999, Journal of Neuroimmunology.

[102]  L. Balcer,et al.  Strategies for Treatment of Myasthenia Gravis a , 1993, Annals of the New York Academy of Sciences.

[103]  D. Richman,et al.  Anti-acetylcholine receptor antibodies directed against the alpha-bungarotoxin binding site induce a unique form of experimental myasthenia. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[104]  R. Ruff,et al.  Single-channel basis of slow inactivation of Na+ channels in rat skeletal muscle. , 1996, The American journal of physiology.

[105]  P. Christadoss,et al.  Suppression of experimental autoimmune myasthenia gravis in IL-10 gene-disrupted mice is associated with reduced B cells and serum cytotoxicity on mouse cell line expressing AChR , 2000, Journal of Neuroimmunology.

[106]  S. Berrih-Aknin,et al.  Major pathogenic effects of anti-MuSK antibodies in Myasthenia Gravis , 2006, Journal of Neuroimmunology.

[107]  R. Mantegazza,et al.  Anti‐titin and Antiryanodine Receptor Antibodies in Myasthenia Gravis Patients with Thymoma , 1998, Annals of the New York Academy of Sciences.

[108]  M. Milani,et al.  Absence of IL-4 Facilitates the Development of Chronic Autoimmune Myasthenia Gravis in C57BL/6 Mice1 , 2003, The Journal of Immunology.

[109]  R. Pascuzzi,et al.  THE HISTORY OF MYASTHENIA GRAVIS , 1961, Medical History.

[110]  H. Kaminski,et al.  Complement regulators in extraocular muscle and experimental autoimmune myasthenia gravis , 2004, Experimental Neurology.

[111]  K. Toyka,et al.  Outcome in juvenile-onset myasthenia gravis: a retrospective study with long-term follow-up of 79 patients , 1997, Journal of Neurology.

[112]  H. Weiner,et al.  Induction and mechanism of action of transforming growth factor‐β‐secreting Th3 regulatory cells , 2001, Immunological reviews.

[113]  G. Gronseth,et al.  Practice parameter: Thymectomy for autoimmune myasthenia gravis (an evidence-based review) , 2000, Neurology.

[114]  Zeng-Yu Wang,et al.  Myasthenia in SCID mice grafted with myasthenic patient lymphocytes , 1999, Neurology.

[115]  N. Gilhus,et al.  Striational antibodies in myasthenia gravis: reactivity and possible clinical significance. , 2005, Archives of neurology.

[116]  H. B. Marsteller The first American case of myasthenia gravis. , 1988, Archives of Neurology.

[117]  R. Sterz,et al.  Postjunctional characteristics of the endplates in mammalian fast and slow muscles , 1983, Pflügers Archiv.

[118]  D. Drachman,et al.  Specific immunotherapy of experimental myasthenia gravis in vitro: the "guided missile" strategy. , 2001, Cellular immunology.

[119]  H. Eng,et al.  Human monoclonal immunoglobulins that bind the human acetylcholine receptor , 1987, European journal of immunology.

[120]  A. Vincent,et al.  Acetylcholine receptors loss and postsynaptic damage in MuSK antibody–positive myasthenia gravis , 2005, Annals of neurology.

[121]  P. Christadoss,et al.  Tumor necrosis factor receptor p55 and p75 deficiency protects mice from developing experimental autoimmune myasthenia gravis , 2002, Journal of Neuroimmunology.

[122]  S. J. Wood,et al.  The contribution of postsynaptic folds to the safety factor for neuromuscular transmission in rat fast‐ and slow‐twitch muscles. , 1997, The Journal of physiology.

[123]  P. Distefano,et al.  The receptor tyrosine kinase MuSK is required for neuromuscular junction formation and is a functional receptor for agrin. , 1996, Cold Spring Harbor symposia on quantitative biology.

[124]  M. Shenoy,et al.  Major histocompatibility complex class II gene disruption prevents experimental autoimmune myasthenia gravis. , 1994, Journal of immunology.

[125]  J. Griffin,et al.  Mycophenolate mofetil: A safe and promising immunosuppressant in neuromuscular diseases , 2001, Neurology.