Intervention strategies for microbial therapeutics in cancer immunotherapy

[1]  Xi Yang,et al.  Gut Microbiome as a Potential Factor for Modulating Resistance to Cancer Immunotherapy , 2020, Frontiers in Immunology.

[2]  Miriam H. Huntley,et al.  Drug-Resistant E. coli Bacteremia Transmitted by Fecal Microbiota Transplant. , 2019, The New England journal of medicine.

[3]  J. Lunceford,et al.  OA04.06 Evaluation of TMB in KEYNOTE-189: Pembrolizumab Plus Chemotherapy vs Placebo Plus Chemotherapy for Nonsquamous NSCLC , 2019, Journal of Thoracic Oncology.

[4]  E. Elinav,et al.  The cancer microbiome , 2019, Nature Reviews Cancer.

[5]  B. Helmink,et al.  The microbiome, cancer, and cancer therapy , 2019, Nature Medicine.

[6]  J. McQuade,et al.  Modulating the microbiome to improve therapeutic response in cancer. , 2019, The Lancet. Oncology.

[7]  E. Rouchka,et al.  Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway , 2019, Nature Communications.

[8]  T A Chan,et al.  Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic , 2018, Annals of oncology : official journal of the European Society for Medical Oncology.

[9]  Christine B. Peterson,et al.  Safety and preliminary efficacy of orally administered lyophilized fecal microbiota product compared with frozen product given by enema for recurrent Clostridium difficile infection: A randomized clinical trial , 2018, PloS one.

[10]  J. Wargo,et al.  The Impact of Intratumoral and Gastrointestinal Microbiota on Systemic Cancer Therapy. , 2018, Trends in immunology.

[11]  Elizabeth A. Kennedy,et al.  Mouse Microbiota Models: Comparing Germ-Free Mice and Antibiotics Treatment as Tools for Modifying Gut Bacteria , 2018, Front. Physiol..

[12]  C. Porta,et al.  Checkpoint inhibitors in patients with metastatic renal cell carcinoma: Results from the International Metastatic Renal Cell Carcinoma Database Consortium , 2018, Cancer.

[13]  G. Zhu,et al.  Effects of Metabolites Derived From Gut Microbiota and Hosts on Pathogens , 2018, Front. Cell. Infect. Microbiol..

[14]  D. Nielsen,et al.  A bacteriophage cocktail targeting Escherichia coli reduces E. coli in simulated gut conditions, while preserving a non-targeted representative commensal normal microbiota , 2018, Gut microbes.

[15]  D. Pardi,et al.  Low Cure Rates in Controlled Trials of Fecal Microbiota Transplantation for Recurrent Clostridium difficile Infection: A Systematic Review and Meta-analysis , 2018, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[16]  K. Pienta,et al.  Compositional differences in gastrointestinal microbiota in prostate cancer patients treated with androgen axis-targeted therapies , 2018, Prostate Cancer and Prostatic Diseases.

[17]  A. Andriulli,et al.  Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies , 2018, Microbiome.

[18]  J. Wargo,et al.  The gut microbiota influences anticancer immunosurveillance and general health , 2018, Nature Reviews Clinical Oncology.

[19]  B. Helmink,et al.  The Influence of the Gut Microbiome on Cancer, Immunity, and Cancer Immunotherapy. , 2018, Cancer cell.

[20]  D. Frank,et al.  Longitudinal microbiome analysis of single donor fecal microbiota transplantation in patients with recurrent Clostridium difficile infection and/or ulcerative colitis , 2018, PloS one.

[21]  Laurence Zitvogel,et al.  Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors , 2018, Science.

[22]  E. Le Chatelier,et al.  Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients , 2018, Science.

[23]  Riyue Bao,et al.  The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients , 2018, Science.

[24]  Pier Federico Gherardini,et al.  High response rate to PD-1 blockade in desmoplastic melanomas , 2017, Nature.

[25]  C. Huttenhower,et al.  Experimental design and quantitative analysis of microbial community multiomics , 2017, Genome Biology.

[26]  Curtis Huttenhower,et al.  bioBakery: a meta’omic analysis environment , 2017, Bioinform..

[27]  Johanna Daily,et al.  Human microbiome signatures of differential colorectal cancer drug metabolism , 2017, npj Biofilms and Microbiomes.

[28]  J. Lee,et al.  Response rates to single-agent chemotherapy after exposure to immune checkpoint inhibitors in advanced non-small cell lung cancer. , 2017, Lung cancer.

[29]  E. Frenkel,et al.  Metagenomic Shotgun Sequencing and Unbiased Metabolomic Profiling Identify Specific Human Gut Microbiota and Metabolites Associated with Immune Checkpoint Therapy Efficacy in Melanoma Patients , 2017, Neoplasia.

[30]  Noam Shental,et al.  Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine , 2017, Science.

[31]  G. Weinstock,et al.  Deciphering functional redundancy in the human microbiome , 2017, Nature Communications.

[32]  Fangfang Guo,et al.  Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy , 2017, Cell.

[33]  M. Redinbo,et al.  The role of the microbiome in cancer development and therapy , 2017, CA: a cancer journal for clinicians.

[34]  P. Ravaud,et al.  Methods and Reporting Studies Assessing Fecal Microbiota Transplantation , 2017, Annals of Internal Medicine.

[35]  B. Neville,et al.  Transmission of the gut microbiota: spreading of health , 2017, Nature Reviews Microbiology.

[36]  A. Eggermont,et al.  Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab , 2017, Annals of oncology : official journal of the European Society for Medical Oncology.

[37]  L. Laine,et al.  The AGA's Fecal Microbiota Transplantation National Registry: An Important Step Toward Understanding Risks and Benefits of Microbiota Therapeutics. , 2017, Gastroenterology.

[38]  C. Mackay,et al.  Diet-Derived Short Chain Fatty Acids Stimulate Intestinal Epithelial Cells To Induce Mucosal Tolerogenic Dendritic Cells , 2017, The Journal of Immunology.

[39]  S. Culine,et al.  Pembrolizumab as Second‐Line Therapy for Advanced Urothelial Carcinoma , 2017, The New England journal of medicine.

[40]  H. Tilg,et al.  European consensus conference on faecal microbiota transplantation in clinical practice , 2017, Gut.

[41]  S. O'keefe Diet, microorganisms and their metabolites, and colon cancer , 2016, Nature Reviews Gastroenterology &Hepatology.

[42]  K. Harrington,et al.  Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. , 2016, The New England journal of medicine.

[43]  M. Henn,et al.  A Novel Microbiome Therapeutic Increases Gut Microbial Diversity and Prevents Recurrent Clostridium difficile Infection. , 2016, The Journal of infectious diseases.

[44]  T. Matozaki,et al.  Promotion of Intestinal Epithelial Cell Turnover by Commensal Bacteria: Role of Short-Chain Fatty Acids , 2016, PloS one.

[45]  Nitin Kumar,et al.  Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation , 2016, Nature.

[46]  M. Ferrer,et al.  Functional Redundancy-Induced Stability of Gut Microbiota Subjected to Disturbance. , 2016, Trends in microbiology.

[47]  V. Apostolopoulos,et al.  Short-Chain Fatty Acids Regulate Cytokines and Th17/Treg Cells in Human Peripheral Blood Mononuclear Cells in vitro , 2016, Immunological investigations.

[48]  A. Taddei,et al.  The interplay between the microbiome and the adaptive immune response in cancer development , 2016, Therapeutic advances in gastroenterology.

[49]  Jason B. Williams,et al.  Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy , 2015, Science.

[50]  F. Ginhoux,et al.  Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota , 2015, Science.

[51]  L. Laine,et al.  Update on Fecal Microbiota Transplantation 2015: Indications, Methodologies, Mechanisms, and Outlook. , 2015, Gastroenterology.

[52]  J. Lunceford,et al.  Pembrolizumab for the treatment of non-small-cell lung cancer. , 2015, The New England journal of medicine.

[53]  C. Huttenhower,et al.  Sequencing and beyond: integrating molecular 'omics' for microbial community profiling , 2015, Nature Reviews Microbiology.

[54]  Rustem F. Ismagilov,et al.  Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis , 2015, Cell.

[55]  P. Sharma,et al.  The future of immune checkpoint therapy , 2015, Science.

[56]  K. Svenson,et al.  Diet dominates host genotype in shaping the murine gut microbiota. , 2015, Cell host & microbe.

[57]  Shawn W. Polson,et al.  High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity , 2014, Nature.

[58]  G. Trinchieri,et al.  Gut microbiome and anticancer immune response: really hot Sh*t! , 2014, Cell Death and Differentiation.

[59]  A. Khoruts,et al.  Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection. , 2014, American journal of physiology. Gastrointestinal and liver physiology.

[60]  J. Bakken,et al.  Fecal microbiota transplantation: a practical update for the infectious disease specialist. , 2014, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[61]  C. Kelly,et al.  Guidance on preparing an investigational new drug application for fecal microbiota transplantation studies. , 2014, Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.

[62]  Lawrence A. David,et al.  Diet rapidly and reproducibly alters the human gut microbiome , 2013, Nature.

[63]  J. Lewis,et al.  Diet, the human gut microbiota, and IBD. , 2013, Anaerobe.

[64]  F. Marincola,et al.  Commensal Bacteria Control Cancer Response to Therapy by Modulating the Tumor Microenvironment , 2013, Science.

[65]  Eric Vivier,et al.  The Intestinal Microbiota Modulates the Anticancer Immune Effects of Cyclophosphamide , 2013, Science.

[66]  Jill P. Mesirov,et al.  Criteria for the use of omics-based predictors in clinical trials , 2013, Nature.

[67]  W. Garrett,et al.  The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis , 2013, Science.

[68]  E. Zoetendal,et al.  Duodenal infusion of donor feces for recurrent Clostridium difficile. , 2013, The New England journal of medicine.

[69]  G. Gloor,et al.  Stool substitute transplant therapy for the eradication of Clostridium difficile infection: ‘RePOOPulating’ the gut , 2013, Microbiome.

[70]  Jesse R. Zaneveld,et al.  Human-associated microbial signatures: examining their predictive value. , 2011, Cell host & microbe.

[71]  F. Bushman,et al.  Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes , 2011, Science.

[72]  A. Wong-Beringer,et al.  Regulatory Oversight and Safety of Probiotic Use , 2010, Emerging infectious diseases.

[73]  H. Harmsen,et al.  Association between Faecalibacterium prausnitzii and dietary fibre in colonic fermentation in healthy human subjects , 2010, British Journal of Nutrition.

[74]  E. Mardis,et al.  An obesity-associated gut microbiome with increased capacity for energy harvest , 2006, Nature.

[75]  F. Bäckhed,et al.  Host-Bacterial Mutualism in the Human Intestine , 2005, Science.

[76]  M. Roberfroid,et al.  Possible adjuvant cancer therapy by two prebiotics--inulin or oligofructose. , 2005, In vivo.