An Empirical Analysis of Multiple Objective Ant Colony Optimization Algorithms for the Bi-criteria TSP

The difficulty to solve multiple objective combinatorial optimization problems with traditional techniques has urged researchers to look for alternative, better performing approaches for them. Recently, several algorithms have been proposed which are based on the Ant Colony Optimization metaheuristic. In this contribution, the existing algorithms of this kind are reviewed and experimentally tested in several instances of the bi-objective traveling salesman problem, comparing their performance with that of two well-known multi-objective genetic algorithms.

[1]  D. Fogel Evolutionary algorithms in theory and practice , 1997, Complex..

[2]  Vidroha Debroy,et al.  Genetic Programming , 1998, Lecture Notes in Computer Science.

[3]  Luca Maria Gambardella,et al.  A Multiple Ant Colony System for Vehicle Routing Problems with Time Windows , 1999 .

[4]  Thomas Stützle,et al.  On the Design of ACO for the Biobjective Quadratic Assignment Problem , 2004, ANTS Workshop.

[5]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[6]  B. Bullnheimer,et al.  A NEW RANK BASED VERSION OF THE ANT SYSTEM: A COMPUTATIONAL STUDY , 1997 .

[7]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.

[8]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[9]  F. Glover,et al.  Handbook of Metaheuristics , 2019, International Series in Operations Research & Management Science.

[10]  Andrzej Jaszkiewicz,et al.  Multiple objective metaheuristic algorithms for combinatorial optimization , 2001 .

[11]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[12]  Eduardo F. Morales,et al.  A Multiple objective Ant--Q algorithm for the design of water distribution irrigation networks , 1998 .

[13]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[14]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[15]  Nicolas Monmarché,et al.  An Ant Colony Optimization algorithm to solve a 2-machine bicriteria flowshop scheduling problem , 2002, Eur. J. Oper. Res..

[16]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[17]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[18]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[19]  A. Márquez,et al.  MONACO-Multi-Objective Network Optimisation Based on an ACO , 2003 .

[20]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[21]  Francisco Herrera,et al.  Analysis of the Best-Worst Ant System and Its Variants on the QAP , 2002, Ant Algorithms.

[22]  Benjamín Barán,et al.  A Multiobjective Ant Colony System for Vehicle Routing Problem with Time Windows , 2003, Applied Informatics.

[23]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[24]  Francisco Herrera,et al.  A New ACO Model Integrating Evolutionary Computation Concepts: The Best-Worst Ant System , 2000 .

[25]  Thomas Stützle,et al.  The Ant Colony Optimization Metaheuristic: Algorithms, Applications, and Advances , 2003 .

[26]  Marc Gravel,et al.  Scheduling continuous casting of aluminum using a multiple objective ant colony optimization metaheuristic , 2002, Eur. J. Oper. Res..

[27]  T. Stützle,et al.  A Review on the Ant Colony Optimization Metaheuristic: Basis, Models and New Trends , 2002 .

[28]  Andrzej Jaszkiewicz,et al.  Genetic local search for multi-objective combinatorial optimization , 2022 .

[29]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[30]  E. L. Ulungu,et al.  Multi‐objective combinatorial optimization problems: A survey , 1994 .

[31]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[32]  Richard F. Hartl,et al.  Pareto Ant Colony Optimization: A Metaheuristic Approach to Multiobjective Portfolio Selection , 2004, Ann. Oper. Res..

[33]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[34]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[35]  Patrick R. McMullen,et al.  An ant colony optimization approach to addressing a JIT sequencing problem with multiple objectives , 2001, Artif. Intell. Eng..

[36]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[37]  Luca Maria Gambardella,et al.  MACS-VRPTW: a multiple ant colony system for vehicle routing problems with time windows , 1999 .

[38]  Luca Maria Gambardella,et al.  Ant-Q: A Reinforcement Learning Approach to the Traveling Salesman Problem , 1995, ICML.

[39]  Marco Dorigo,et al.  The ant colony optimization meta-heuristic , 1999 .

[40]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[41]  Daniel Merkle,et al.  Bi-Criterion Optimization with Multi Colony Ant Algorithms , 2001, EMO.