Tidal Effects on the Longitudinal Structures of the Martian Thermosphere and Topside Ionosphere Observed by MAVEN

Longitudinal structures in the Martian thermosphere and topside ionosphere between 150 and 200 km altitudes are studied using in situ electron and neutral measurements from the NASA Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. Four time intervals are selected for comparison, during which MAVEN sampled similar local time (9.3–10.3 h) and latitude (near 20°S) regions but at different solar longitude positions (two near northern summer solstice, one each at northern vernal and autumnal equinoxes). Persistent and pronounced tidal oscillations characterize the ionosphere and thermosphere, whose longitudinal variations in density are generally in‐phase with each other. Our analysis of simultaneous and collocated neutral and electron data provides direct observational evidence for thermosphere‐ionosphere coupling through atmospheric tides. We conclude that the ionosphere is subject to modulation by upward‐propagating thermal tides, via both tide‐induced vertical displacement and photochemical reactions. Atmospheric tides constitute a ubiquitous and significant perturbation source to the ionospheric electron density, up to ∼15% near 200 km.

[1]  J. Forbes,et al.  Solar Tides in the Middle and Upper Atmosphere of Mars , 2020, Journal of Geophysical Research: Space Physics.

[2]  F. González-Galindo,et al.  Tidal Wave-Driven Variability in the Mars Ionosphere-Thermosphere System , 2020, Atmosphere.

[3]  B. Jakosky,et al.  Mars Dust Storm Effects in the Ionosphere and Magnetosphere and Implications for Atmospheric Carbon Loss , 2020, Journal of Geophysical Research: Space Physics.

[4]  E. Millour,et al.  Martian Year 34 Column Dust Climatology from Mars Climate Sounder Observations: Reconstructed Maps and Model Simulations , 2019, Journal of Geophysical Research: Planets.

[5]  P. Mahaffy,et al.  Atmospheric Tides at High Latitudes in the Martian Upper Atmosphere Observed by MAVEN and MRO , 2019, Journal of Geophysical Research: Space Physics.

[6]  J. Forbes,et al.  Polar Region Variability in the Lower Thermosphere of Mars From Odyssey and Reconnaissance Orbiter Aerobraking Measurements , 2018, Journal of Geophysical Research: Space Physics.

[7]  B. Jakosky,et al.  The Mars crustal magnetic field control of plasma boundary locations and atmospheric loss: MHD prediction and comparison with MAVEN , 2017 .

[8]  B. Jakosky,et al.  Longitudinal structures in Mars' upper atmosphere as observed by MAVEN/NGIMS , 2016 .

[9]  B. Jakosky,et al.  Electron energetics in the Martian dayside ionosphere: Model comparisons with MAVEN data , 2016 .

[10]  B. Jakosky,et al.  Simultaneous observations of atmospheric tides from combined in situ and remote observations at Mars from the MAVEN spacecraft , 2016 .

[11]  X. Dou,et al.  Seasonal variation of Martian middle atmosphere tides observed by the Mars Climate Sounder , 2015 .

[12]  Arnett,et al.  The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution Mission , 2015 .

[13]  Robert J. Lillis,et al.  Control of Mars global atmospheric loss by the continuous rotation of the crustal magnetic field: A time‐dependent MHD study , 2015 .

[14]  Bruce M. Jakosky,et al.  First measurements of composition and dynamics of the Martian ionosphere by MAVEN's Neutral Gas and Ion Mass Spectrometer , 2015 .

[15]  B. Jakosky,et al.  Nonmigrating tides in the Martian atmosphere as observed by MAVEN IUVS , 2015 .

[16]  B. Jakosky,et al.  Ionospheric plasma density variations observed at Mars by MAVEN/LPW , 2015 .

[17]  E. Millour,et al.  Variability of the Martian thermosphere during eight Martian years as simulated by a ground‐to‐exosphere global circulation model , 2015 .

[18]  R. Ergun,et al.  The Langmuir Probe and Waves (LPW) Instrument for MAVEN , 2015 .

[19]  T. Woods,et al.  The Solar Extreme Ultraviolet Monitor for MAVEN , 2015 .

[20]  A. Ridley,et al.  Mars Global Ionosphere‐Thermosphere Model: Solar cycle, seasonal, and diurnal variations of the Mars upper atmosphere , 2015 .

[21]  Christopher T. Russell,et al.  Effects of crustal field rotation on the solar wind plasma interaction with Mars , 2014 .

[22]  M. Grott,et al.  A spherical harmonic model of the lithospheric magnetic field of Mars , 2014 .

[23]  D. Waugh,et al.  Observations of planetary waves and nonmigrating tides by the Mars Climate Sounder , 2012 .

[24]  F. Duru,et al.  Dayside ionosphere of Mars: Empirical model based on data from the MARSIS instrument , 2011 .

[25]  J. Forbes,et al.  A new interpretation of Mars aerobraking variability: Planetary wave‐tide interactions , 2010 .

[26]  J. Forbes,et al.  Topographic connections with density waves in Mars' aerobraking regime , 2008 .

[27]  R. Roble,et al.  Connections between deep tropical clouds and the Earth's ionosphere , 2007 .

[28]  R. Tolson,et al.  Nonmigrating tides inferred from the Mars Odyssey and Mars Global Surveyor aerobraking data , 2006 .

[29]  Larry J. Paxton,et al.  Control of equatorial ionospheric morphology by atmospheric tides , 2006 .

[30]  J. Forbes,et al.  Solar Semidiurnal Tide in the Dusty Atmosphere of Mars , 2006 .

[31]  K. Cahoy,et al.  Radio science measurements of atmospheric refractivity with Mars Global Surveyor , 2006 .

[32]  David P. Hinson,et al.  MGS Radio Science electron density profiles: Interannual variability and implications for the Martian neutral atmosphere , 2004 .

[33]  G. Keating,et al.  The effects of topographically-controlled thermal tides in the martian upper atmosphere as seen by the MGS accelerometer , 2003 .

[34]  G. M. Keating,et al.  Nonmigrating tides in the thermosphere of Mars , 2002 .

[35]  R. John Wilson,et al.  Evidence for nonmigrating thermal tides in the Mars upper atmosphere from the Mars Global Surveyor Accelerometer Experiment , 2002 .

[36]  J. Forbes,et al.  Mars Global Surveyor radio science electron density profiles : Neutral atmosphere implications , 2001 .

[37]  Robert W. Schunk,et al.  Ionospheres : physics, plasma physics, and chemistry , 2000 .

[38]  Stephen R. Lewis,et al.  Improved general circulation models of the Martian atmosphere from the surface to above 80 km , 1999 .

[39]  Richard W. Zurek,et al.  Thermal tides and Martian dust storms: Direct evidence for coupling , 1979 .

[40]  W. B. Hanson,et al.  The Martian ionosphere as observed by the Viking retarding potential analyzers , 1977 .

[41]  Richard W. Zurek,et al.  Diurnal tide in the Martian atmosphere , 1976 .

[42]  R. Clancy,et al.  Upper Neutral Atmosphere and Ionosphere , 2017 .