THE VLA NASCENT DISK AND MULTIPLICITY (VANDAM) SURVEY OF PERSEUS PROTOSTARS. RESOLVING THE SUB-ARCSECOND BINARY SYSTEM IN NGC 1333 IRAS2A

We are conducting a Jansky Very Large Array (VLA) Ka-band (8 mm and 1 cm) and C-band (4 cm and 6.4 cm) survey of all known protostars in the Perseus Molecular Cloud, providing resolution down to ∼0.″06 and ∼0.″35 in the Ka band and C band, respectively. Here we present first results from this survey that enable us to examine the source NGC 1333 IRAS2A in unprecedented detail and resolve it into a protobinary system separated by 0.″621 ± 0.″006 (∼143 AU) at 8 mm, 1 cm, and 4 cm. These two sources (IRAS2A VLA1 and VLA2) are likely driving the two orthogonal outflows known to originate from IRAS2A. The brighter source IRAS2A VLA1 is extended perpendicular to its outflow in the VLA data, with a deconvolved size of 0.″055 (∼13 AU), possibly tracing a protostellar disk. The recently reported candidate companions (IRAS2A MM2 and MM3) are not detected in either our VLA data, Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1.3 mm data, or Submillimeter Array (SMA) 850 μm data. SMA CO (J = 3 → 2), CARMA CO (J = 2 → 1), and lower-resolution CARMA CO (J = 1 → 0) observations are used to examine the outflow origins and the nature of the candidate companions to IRAS2A VLA1. The CO (J = 3 → 2) and (J = 2 → 1) data show that IRAS2A MM2 is coincident with a bright CO emission spot in the east–west outflow, and IRAS2A MM3 is within the north–south outflow. In contrast, IRAS2A VLA2 lies at the east–west outflow symmetry point. We propose that IRAS2A VLA2 is the driving source of the east–west outflow and a true companion to IRAS2A VLA1, whereas IRAS2A MM2 and MM3 may not be protostellar.

[1]  Jonathan P. Williams,et al.  ALMA OBSERVATIONS OF A MISALIGNED BINARY PROTOPLANETARY DISK SYSTEM IN ORION , 2014, 1410.3570.

[2]  R. Akeson,et al.  Misaligned protoplanetary disks in a young binary star system , 2014, Nature.

[3]  C. Vastel,et al.  HIGH D2O/HDO RATIO IN THE INNER REGIONS OF THE LOW-MASS PROTOSTAR NGC 1333 IRAS2A , 2014, 1407.6842.

[4]  A. Gusdorf,et al.  The ALMA view of the protostellar system HH212 - The wind, the cavity, and the disk , 2014, 1407.6229.

[5]  J. Hatchell,et al.  The James Clerk Maxwell Telescope dense gas survey of the Perseus molecular cloud , 2014 .

[6]  E. Bergin,et al.  ALMA observations of the kinematics and chemistry of disc formation , 2014, 1405.1416.

[7]  N. Peretto,et al.  CLASS 0 PROTOSTARS IN THE PERSEUS MOLECULAR CLOUD: A CORRELATION BETWEEN THE YOUNGEST PROTOSTARS AND THE DENSE GAS DISTRIBUTION , 2014, 1404.7142.

[8]  K. Stassun,et al.  Multiplicity in Early Stellar Evolution , 2014, 1403.1907.

[9]  T. P. Ray,et al.  Jets and Outflows from Star to Cloud: Observations Confront Theory , 2014, 1402.3553.

[10]  S. Bontemps,et al.  First results from the CALYPSO IRAM-PdBI survey - II. Resolving the hot corino in the Class 0 protostar NGC 1333-IRAS2A , 2014, 1401.6998.

[11]  S. Bontemps,et al.  First results from the CALYPSO IRAM-PdBI survey - I. Kinematics of the inner envelope of NGC 1333-IRAS2A , 2014, 1401.6986.

[12]  P. Andre',et al.  First results from the CALYPSO IRAM-PdBI survey - III. Monopolar jets driven by a proto-binary system in NGC 1333-IRAS2A , 2014, 1401.6672.

[13]  M. Wright,et al.  TADPOL: A 1.3 mm SURVEY OF DUST POLARIZATION IN STAR-FORMING CORES AND REGIONS , 2013, 1310.6653.

[14]  S. Corder,et al.  CARMA OBSERVATIONS OF PROTOSTELLAR OUTFLOWS IN NGC 1333 , 2013, 1307.3558.

[15]  Astrophysics,et al.  SMA OBSERVATIONS OF CLASS 0 PROTOSTARS: A HIGH ANGULAR RESOLUTION SURVEY OF PROTOSTELLAR BINARY SYSTEMS , 2013, 1304.0436.

[16]  Harvard-Smithsonian CfA,et al.  Stellar Multiplicity , 2013, 1303.3028.

[17]  N. Murillo,et al.  Disentangling the Entangled: Observations and Analysis of the Triple Non-coeval Protostellar System VLA1623 , 2013, 1301.5230.

[18]  L. Hartmann,et al.  RESOLVED DEPLETION ZONES AND SPATIAL DIFFERENTIATION OF N2H+ AND N2D+ , 2013, 1301.1655.

[19]  L. Hartmann,et al.  A ∼0.2-solar-mass protostar with a Keplerian disk in the very young L1527 IRS system , 2012, Nature.

[20]  L. Mundy,et al.  CONSTRAINTS ON THE RADIAL VARIATION OF GRAIN GROWTH IN THE AS 209 CIRCUMSTELLAR DISK , 2012, 1210.5252.

[21]  A. Giorgio,et al.  Herschel observations of B1-bS and B1-bN: two first hydrostatic core candidates in the Perseus star-forming cloud , 2012, 1209.5290.

[22]  E. Dishoeck,et al.  Subarcsecond resolution observations of warm water toward three deeply embedded low-mass protostars , 2012, 1203.4969.

[23]  Zhaohuan Zhu,et al.  CHALLENGES IN FORMING PLANETS BY GRAVITATIONAL INSTABILITY: DISK IRRADIATION AND CLUMP MIGRATION, ACCRETION, AND TIDAL DESTRUCTION , 2011, 1111.6943.

[24]  J. Foster,et al.  THE ENIGMATIC CORE L1451-mm: A FIRST HYDROSTATIC CORE? OR A HIDDEN VeLLO? , 2011, 1109.1207.

[25]  L. Chomiuk,et al.  MICROWAVE OBSERVATIONS OF EDGE-ON PROTOPLANETARY DISKS: PROGRAM OVERVIEW AND FIRST RESULTS , 2011, 1106.4519.

[26]  Frantz Martinache,et al.  MAPPING THE SHORES OF THE BROWN DWARF DESERT. II. MULTIPLE STAR FORMATION IN TAURUS–AURIGA , 2011, 1101.4016.

[27]  R. Klein,et al.  THE FORMATION OF LOW-MASS BINARY STAR SYSTEMS VIA TURBULENT FRAGMENTATION , 2010, 1010.3702.

[28]  M. Dunham,et al.  A CANDIDATE DETECTION OF THE FIRST HYDROSTATIC CORE , 2010, 1009.0536.

[29]  H. Kobayashi,et al.  Astrometry of H$_{2}$ O Masers in Nearby Star-Forming Regions with VERA. IV. L 1448 C , 2010, 1007.4385.

[30]  Canada,et al.  THE BURST MODE OF ACCRETION AND DISK FRAGMENTATION IN THE EARLY EMBEDDED STAGES OF STAR FORMATION , 2010, 1007.2993.

[31]  D. Johnstone,et al.  AN OBSERVED LACK OF SUBSTRUCTURE IN STARLESS CORES. II. SUPER-JEANS CORES , 2010, 1005.5169.

[32]  Qizhou Zhang,et al.  L1448 IRS2E: A CANDIDATE FIRST HYDROSTATIC CORE , 2010, 1004.2443.

[33]  C. Dullemond,et al.  Gas- and dust evolution in protoplanetary disks , 2010, 1002.0335.

[34]  A. Whitworth,et al.  Toward understanding the formation of multiple systems - A pilot IRAM-PdBI survey of Class 0 objects , 2010, 1001.3691.

[35]  Russel J. White,et al.  A SURVEY OF STELLAR FAMILIES: MULTIPLICITY OF SOLAR-TYPE STARS , 2009, 1007.0414.

[36]  Berkeley,et al.  ON THE ROLE OF DISKS IN THE FORMATION OF STELLAR SYSTEMS: A NUMERICAL PARAMETER STUDY OF RAPID ACCRETION , 2009, 0907.3476.

[37]  C. Brinch,et al.  The kinematics of NGC 1333-IRAS2A – a true Class 0 protostar , 2009, 0905.4575.

[38]  J. Girart,et al.  THE L723 LOW-MASS STAR FORMING PROTOSTELLAR SYSTEM: RESOLVING A DOUBLE CORE , 2008, 0811.3415.

[39]  N. Evans,et al.  PROPERTIES OF THE YOUNGEST PROTOSTARS IN PERSEUS, SERPENS, AND OPHIUCHUS , 2008, 0809.4012.

[40]  B. Reipurth,et al.  THE EVOLUTION OF THE MULTIPLICITY OF EMBEDDED PROTOSTARS. II. BINARY SEPARATION DISTRIBUTION AND ANALYSIS , 2008, 0803.1172.

[41]  S. Sakai,et al.  Astrometry of H2O Masers in Nearby Star-Forming Regions with VERA II SVS 13 in NGC 1333 , 2008 .

[42]  J. Girart,et al.  A Multiple System of Radio Sources at the Core of the L723 Multipolar Outflow , 2007, 0712.1454.

[43]  R. A. Gutermuth,et al.  Spitzer Observations of NGC 1333: A Study of Structure and Evolution in a Nearby Embedded Cluster , 2007, 0710.1860.

[44]  C. Young,et al.  The Detection and Characterization of Centimeter Radio Continuum Emission from the Low-Mass Protostar L1014-IRS , 2007, 0705.1747.

[45]  L. Mundy,et al.  Dense Cores with Multiple Protostars: The Velocity Fields of L1448 IRS 3, NGC 1333 IRAS 2, and NGC 1333 IRAS 4 , 2006 .

[46]  D. Padgett,et al.  The Spitzer c2d Survey of Large, Nearby, Interstellar Clouds. III. Perseus Observed with IRAC , 2006, astro-ph/0603547.

[47]  C. Lada Stellar Multiplicity and the Initial Mass Function: Most Stars Are Single , 2006, astro-ph/0601375.

[48]  L. Mundy,et al.  Large dust particles in disks around T Tauri stars , 2005, astro-ph/0509555.

[49]  A. Tielens The Physics and Chemistry of the Interstellar Medium , 2005 .

[50]  D. Wilner,et al.  Probing the Inner 200 AU of Low-Mass Protostars with the Submillimeter Array: Dust and Organic Molecules in NGC 1333 IRAS 2A , 2005, astro-ph/0506671.

[51]  N. Schneider,et al.  Sulphur chemistry and molecular shocks : The case of NGC 1333-IRAS 2 , 2005, astro-ph/0503462.

[52]  S. Qin,et al.  A study of high velocity molecular outflows with an up-to-date sample , 2004, astro-ph/0410727.

[53]  James M. Moran,et al.  The Submillimeter Array , 2004, Astronomical Telescopes and Instrumentation.

[54]  C. I. O. Technology.,et al.  The impact of shocks on the chemistry of molecular clouds High resolution images of chemical differentiation along the NGC 1333-IRAS 2A outflow , 2003, astro-ph/0311132.

[55]  C. I. O. Technology.,et al.  The structure of the NGC 1333-IRAS2 protostellar system on 500 AU scales - An infalling envelope, a circumstellar disk, multiple outflows, and chemistry , 2003, astro-ph/0310110.

[56]  J. Bally,et al.  Radio Continuum Maps of Deeply Embedded Protostars: Thermal Jets, Multiplicity, and Variability , 2002 .

[57]  P. Padoan,et al.  The Stellar Initial Mass Function from Turbulent Fragmentation , 2000, astro-ph/0011465.

[58]  A. Boss,et al.  COLLAPSE AND FRAGMENTATION OF MAGNETIC MOLECULAR CLOUD CORES WITH THE ENZO AMR MHD CODE. I. UNIFORM DENSITY SPHERES , 1999, 1408.2479.

[59]  G. Anglada,et al.  The Nature of the Radio Continuum Sources Embedded in the HH 7-11 Region and Its Surroundings , 1999 .

[60]  Lee G. Mundy,et al.  Unveiling the Circumstellar Envelope and Disk: A Subarcsecond Survey of Circumstellar Structures , 1999, astro-ph/9908301.

[61]  I. Bonnell,et al.  The formation of close binary systems , 1994, astro-ph/9411081.

[62]  I. Bonnell,et al.  Massive circumbinary discs and the formation of multiple systems , 1994 .

[63]  P. Bodenheimer,et al.  Multiple fragmentation in collapsing protostars , 1993 .

[64]  I. Bonnell,et al.  Fragmentation of elongated cylindrical clouds. VI: Comparison with observations , 1993 .

[65]  P. Andre',et al.  Submillimeter Continuum Observations of rho Ophiuchi A: The Candidate Protostar VLA 1623 and Prestellar Clumps , 1993 .

[66]  S. Miyama,et al.  Self-similar Solutions and the Stability of Collapsing Isothermal Filaments , 1992 .

[67]  D. Hollenbach,et al.  Molecule Formation and Infrared Emission in Fast Interstellar Shocks. III. Results for J Shocks in Molecular Clouds , 1989 .

[68]  B. Draine Magneto-Hydrodynamic Shock Waves in Molecular Clouds , 1983 .

[69]  R. Blandford,et al.  Hydromagnetic flows from accretion discs and the production of radio jets , 1982 .

[70]  P. Cassen,et al.  On the formation of protostellar disks , 1981 .

[71]  G. Sandell,et al.  NGC 1333—Protostars, Dust Shells, and Triggered Star Formation , 2000 .

[72]  Jun Jugaku,et al.  Star Forming Regions , 1987 .

[73]  C. Lada,et al.  An Electronic Publication Dedicated to Early Stellar Evolution and Molecular Clouds Correlation between Gas and Dust in Molecular Clouds: L977 Spectral Indices of Centimeter Continuum Sources in Star-forming Regions: Implica- Tions on the Nature of the Outflow Exciting Sources , 2022 .