Enzyme immobilisation using SBA-15 mesoporous molecular sieves with functionalised surfaces

[1]  P. Wright,et al.  Enzyme immobilisation using siliceous mesoporous molecular sieves , 2001 .

[2]  K. Balkus,et al.  Cytochrome c immobilization into mesoporous molecular sieves , 2000 .

[3]  Brian J. Melde,et al.  Hybrid Inorganic–Organic Mesoporous Silicates—Nanoscopic Reactors Coming of Age , 2000 .

[4]  R. Anwander,et al.  Surface Characterization and Functionalization of MCM-41 Silicas via Silazane Silylation , 2000 .

[5]  Eduardo Ruiz-Hitzky,et al.  Selective Functionalization of Mesoporous Silica , 2000 .

[6]  R. Slade,et al.  Steric effects in the sorption of n-butanol and tert-butanol by tailored phenyl-modified porous silicas , 2000 .

[7]  J. Clark,et al.  Modified silicas for clean technology , 2000 .

[8]  G. Ozin Panoscopic materials: synthesis over ‘all’length scales , 2000 .

[9]  D. Zhao,et al.  A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions , 2000 .

[10]  W. Tischer,et al.  Immobilized enzymes: crystals or carriers? , 1999, Trends in biotechnology.

[11]  F. Babonneau,et al.  Structural characterization of organically-modified porous silicates synthesized using CTA+ surfactant and acidic conditions , 1999 .

[12]  G. Ozin,et al.  Periodic mesoporous organosilicas, PMOs: fusion of organic and inorganic chemistry ‘inside’ the channel walls of hexagonal mesoporous silica , 1999 .

[13]  Brian F. G. Johnson,et al.  Site-Directed Surface Derivatization of MCM-41: Use of High-Resolution Transmission Electron Microscopy and Molecular Recognition for Determining the Position of Functionality within Mesoporous Materials. , 1998, Angewandte Chemie.

[14]  Bradley F. Chmelka,et al.  Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures , 1998 .

[15]  Gao Qing Lu,et al.  Modification of MCM-41 by Surface Silylation with Trimethylchlorosilane and Adsorption Study , 1998 .

[16]  T. Maschmeyer Derivatised mesoporous solids , 1998 .

[17]  D. Zhao,et al.  Topological construction of mesoporous materials , 1998 .

[18]  R. Slade,et al.  Synthesis of a large pore phenyl-modified mesoporous silica and its characterization by nitrogen and benzene sorption , 1998 .

[19]  T. Bein,et al.  Internal Modification of Ordered Mesoporous Hosts , 1998 .

[20]  K. Balkus,et al.  Mesoporous molecular sieve immobilized enzymes , 1998 .

[21]  Avelino Corma,et al.  From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. , 1997, Chemical reviews.

[22]  D. Brunel,et al.  Monoglyceride Synthesis by Heterogeneous Catalysis Using MCM-41 Type Silicas Functionalized with Amino Groups. , 1997, The Journal of organic chemistry.

[23]  K. Balkus,et al.  Enzyme immobilization in MCM-41 molecular sieve , 1996 .

[24]  D. Brunel,et al.  MCM-41 type silicas as supports for immobilized catalysts , 1995 .

[25]  A. L. Crumbliss,et al.  The Use of Inorganic Materials to Control or Maintain Immobilized Enzyme Activity , 1994 .

[26]  Shan S. Wong,et al.  Chemistry of Protein Conjugation and Cross Linking , 1991 .

[27]  E. L. Harris,et al.  Protein purification methods : a practical approach , 1989 .

[28]  S. A. Barker,et al.  Immobilization of enzymes on spheron: 1. Trypsin and glucoamylase by the titanium-chelation method , 1982 .

[29]  R. Stroud,et al.  Structure and specific binding of trypsin: comparison of inhibited derivatives and a model for substrate binding. , 1974, Journal of molecular biology.

[30]  M. L. Anson,et al.  THE ESTIMATION OF PEPSIN, TRYPSIN, PAPAIN, AND CATHEPSIN WITH HEMOGLOBIN , 1938, The Journal of general physiology.