An efficient alternating direction method of multipliers for optimal control problems constrained by random Helmholtz equations

Based on the alternating direction method of multipliers (ADMM), we develop three numerical algorithms incrementally for solving the optimal control problems constrained by random Helmholtz equations. First, we apply the standard Monte Carlo technique and finite element method for the random and spatial discretization, respectively, and then ADMM is used to solve the resulting system. Next, combining the multi-modes expansion, Monte Carlo technique, finite element method, and ADMM, we propose the second algorithm. In the third algorithm, we preprocess certain quantities before the ADMM iteration, so that nearly no random variable is in the inner iteration. This algorithm is the most efficient one and is easy to implement. The error estimates of these three algorithms are established. The numerical experiments verify the efficiency of our algorithms.

[1]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[2]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[3]  Weidong Zhao,et al.  A Multistep Scheme for Decoupled Forward-Backward Stochastic Differential Equations , 2016 .

[4]  Christian Meyer,et al.  State-Constrained Optimal Control of Semilinear Elliptic Equations with Nonlocal Radiation Interface Conditions , 2009, SIAM J. Control. Optim..

[5]  Stephen P. Boyd,et al.  An ADMM Algorithm for a Class of Total Variation Regularized Estimation Problems , 2012, 1203.1828.

[6]  Michael K. Ng,et al.  Solving Constrained Total-variation Image Restoration and Reconstruction Problems via Alternating Direction Methods , 2010, SIAM J. Sci. Comput..

[7]  J. M. Chuang,et al.  Optimal control of current in a cathodic protection system: A numerical investigation , 2007 .

[8]  Ekkehard W. Sachs,et al.  Quasi Newton methods and unconstrained optimal control problems , 1986 .

[9]  Alfio Quarteroni,et al.  Weighted Reduced Basis Method for Stochastic Optimal Control Problems with Elliptic PDE Constraint , 2014, SIAM/ASA J. Uncertain. Quantification.

[10]  Juan Carlos De Los Reyes,et al.  Numerical PDE-Constrained Optimization , 2015 .

[11]  Marco Fuhrman,et al.  Optimal control of a stochastic heat equation with boundary-noise and boundary-control , 2007 .

[12]  Guang Lin,et al.  An adaptive ANOVA-based data-driven stochastic method for elliptic PDEs with random coefficient , 2014 .

[13]  Jangwoon Lee,et al.  Error Estimates of Stochastic Optimal Neumann Boundary Control Problems , 2011, SIAM J. Numer. Anal..

[14]  Ivan P. Gavrilyuk,et al.  Lagrange multiplier approach to variational problems and applications , 2010, Math. Comput..

[15]  Frances Y. Kuo,et al.  Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients , 2012, 1208.6349.

[16]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[17]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[18]  Tao Zhou,et al.  Stochastic collocation on unstructured multivariate meshes , 2015, 1501.05891.

[19]  Weidong Zhao,et al.  Deferred Correction Methods for Forward Backward Stochastic Differential Equations , 2017 .

[20]  Gianluigi Rozza,et al.  Multilevel and weighted reduced basis method for stochastic optimal control problems constrained by Stokes equations , 2016, Numerische Mathematik.

[21]  Deren Han,et al.  Nonnegative tensor factorizations using an alternating direction method , 2013 .

[22]  Andrea Barth,et al.  Multi-level Monte Carlo finite element method for elliptic PDE's with stochastic coefficients , 2010 .

[23]  W. Sun Optimal control of impressed cathodic protection systems in ship building , 1996 .

[24]  Junshan Lin,et al.  An Efficient Numerical Method for Acoustic Wave Scattering in Random Media , 2014, SIAM/ASA J. Uncertain. Quantification.

[25]  Jialin Hong,et al.  A Compact Scheme for Coupled Stochastic Nonlinear Schrödinger Equations , 2017 .

[26]  Deren Han,et al.  O(1/t) complexity analysis of the generalized alternating direction method of multipliers , 2019 .

[27]  Colas Schretter,et al.  Monte Carlo and Quasi-Monte Carlo Methods , 2016 .

[28]  Bart G. van Bloemen Waanders,et al.  A Trust-Region Algorithm with Adaptive Stochastic Collocation for PDE Optimization under Uncertainty , 2012, SIAM J. Sci. Comput..

[29]  Xiaoshen Wang,et al.  An alternating direction method of multipliers for elliptic equation constrained optimization problem , 2016, Science China Mathematics.

[30]  Garth N. Wells,et al.  Optimal control with stochastic PDE constraints and uncertain controls , 2011, ArXiv.

[31]  Junfeng Yang,et al.  Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..

[32]  Bingsheng He,et al.  On the O(1/t) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators , 2013, Computational Optimization and Applications.

[33]  Masao Fukushima,et al.  Some Reformulations and Applications of the Alternating Direction Method of Multipliers , 1994 .

[34]  Gianluigi Rozza,et al.  Stochastic Optimal Robin Boundary Control Problems of Advection-Dominated Elliptic Equations , 2013, SIAM J. Numer. Anal..

[35]  Andrea Barth,et al.  Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.

[36]  Bingsheng He,et al.  On non-ergodic convergence rate of Douglas–Rachford alternating direction method of multipliers , 2014, Numerische Mathematik.

[37]  Bingsheng He,et al.  On the O(1/n) Convergence Rate of the Douglas-Rachford Alternating Direction Method , 2012, SIAM J. Numer. Anal..

[38]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[39]  R. Naseri,et al.  Numerical Optimal Control for Problems with Random Forced SPDE Constraints , 2014 .

[40]  Karl Kunisch,et al.  SUFFICIENT OPTIMALITY CONDITIONS AND SEMI-SMOOTH NEWTON METHODS FOR OPTIMAL CONTROL OF STATIONARY VARIATIONAL INEQUALITIES , 2012 .

[41]  Robert Michael Kirby,et al.  Stochastic Collocation for Optimal Control Problems with Stochastic PDE Constraints , 2012, SIAM J. Control. Optim..

[42]  Thomas A. Zang,et al.  An Efficient Monte Carlo Method for Optimal Control Problems with Uncertainty , 2003, Comput. Optim. Appl..

[43]  Nigel J. Cutland,et al.  Optimal Control for Two-Dimensional Stochastic Navier-Stokes Equations , 2007 .