A neuro-vector-symbolic architecture for solving Raven’s progressive matrices

[1]  L. Benini,et al.  In-memory factorization of holographic perceptual representations , 2022, Nature Nanotechnology.

[2]  Evgeny Osipov,et al.  A Survey on Hyperdimensional Computing aka Vector Symbolic Architectures, Part II: Applications, Cognitive Models, and Challenges , 2021, ACM Comput. Surv..

[3]  Abbas Rahimi,et al.  A Survey on Hyperdimensional Computing aka Vector Symbolic Architectures, Part I: Models and Data Transformations , 2021, ACM Comput. Surv..

[4]  A. Srinivasan,et al.  Knowledge-based Analogical Reasoning in Neuro-symbolic Latent Spaces , 2022, NeSy.

[5]  J. Tenenbaum,et al.  FALCON: Fast Visual Concept Learning by Integrating Images, Linguistic descriptions, and Conceptual Relations , 2022, ICLR.

[6]  Mikolaj Malki'nski,et al.  Deep Learning Methods for Abstract Visual Reasoning: A Survey on Raven's Progressive Matrices , 2022, ArXiv.

[7]  Tao Zhuo,et al.  Effective Abstract Reasoning with Dual-Contrast Network , 2022, ICLR.

[8]  Mohan S. Kankanhalli,et al.  Unsupervised Abstract Reasoning for Raven’s Problem Matrices , 2021, IEEE Transactions on Image Processing.

[9]  Bruno A. Olshausen,et al.  Computing on Functions Using Randomized Vector Representations (in brief) , 2021, NICE.

[10]  Xiaoxin Xu,et al.  Implementation of Highly Reliable and Energy Efficient in‐Memory Hamming Distance Computations in 1 Kb 1‐Transistor‐1‐Memristor Arrays , 2021, Advanced Materials Technologies.

[11]  Zhongrui Wang,et al.  Memristive Crossbar Arrays for Storage and Computing Applications , 2021, Adv. Intell. Syst..

[12]  Song-Chun Zhu,et al.  Abstract Spatial-Temporal Reasoning via Probabilistic Abduction and Execution , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  M. Mitchell Abstraction and analogy‐making in artificial intelligence , 2021, Annals of the New York Academy of Sciences.

[14]  Ernest Davis,et al.  Insights for AI from the human mind , 2020, Commun. ACM.

[15]  Luca Benini,et al.  Robust high-dimensional memory-augmented neural networks , 2020, Nature Communications.

[16]  Lior Wolf,et al.  Scale-Localized Abstract Reasoning , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Xianglong Liu,et al.  Stratified Rule-Aware Network for Abstract Visual Reasoning , 2020, AAAI.

[18]  Bruno A. Olshausen,et al.  Resonator Networks, 1: An Efficient Solution for Factoring High-Dimensional, Distributed Representations of Data Structures , 2020, Neural Computation.

[19]  Bruno A. Olshausen,et al.  Resonator Networks, 2: Factorization Performance and Capacity Compared to Optimization-Based Methods , 2020, Neural Computation.

[20]  Jimmy Ba,et al.  The Scattering Compositional Learner: Discovering Objects, Attributes, Relationships in Analogical Reasoning , 2020, ArXiv.

[21]  E. Eleftheriou,et al.  Memory devices and applications for in-memory computing , 2020, Nature Nanotechnology.

[22]  Thomas Martinetz,et al.  Solving Raven’s Progressive Matrices with Multi-Layer Relation Networks , 2020, 2020 International Joint Conference on Neural Networks (IJCNN).

[23]  Mohan Kankanhalli,et al.  Solving Raven's Progressive Matrices with Neural Networks , 2020, ArXiv.

[24]  J. Tenenbaum,et al.  CLEVRER: CoLlision Events for Video REpresentation and Reasoning , 2019, ICLR.

[25]  Luca Benini,et al.  In-memory hyperdimensional computing , 2019, Nature Electronics.

[26]  J. L. Albright Critical Analysis , 2020, Management Control Systems and Tools for Internationalization Success.

[27]  Chuang Gan,et al.  Visual Concept-Metaconcept Learning , 2020, NeurIPS.

[28]  Kecheng Zheng,et al.  Abstract Reasoning with Distracting Features , 2019, NeurIPS.

[29]  Yixin Zhu,et al.  Learning Perceptual Inference by Contrasting , 2019, NeurIPS.

[30]  T. Prodromakis,et al.  A semi-holographic hyperdimensional representation system for hardware-friendly cognitive computing , 2019, Philosophical Transactions of the Royal Society A.

[31]  Chuang Gan,et al.  The Neuro-Symbolic Concept Learner: Interpreting Scenes Words and Sentences from Natural Supervision , 2019, ICLR.

[32]  Feng Gao,et al.  RAVEN: A Dataset for Relational and Analogical Visual REasoNing , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Cees Snoek,et al.  Hyperspherical Prototype Networks , 2019, NeurIPS.

[34]  Chuang Gan,et al.  Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding , 2018, NeurIPS.

[35]  Felix Hill,et al.  Measuring abstract reasoning in neural networks , 2018, ICML.

[36]  Li Fei-Fei,et al.  CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Jussi H. Poikonen,et al.  High-dimensional computing with sparse vectors , 2015, 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS).

[38]  Fredrik Sandin,et al.  Analogical mapping and inference with binary spatter codes and sparse distributed memory , 2013, The 2013 International Joint Conference on Neural Networks (IJCNN).

[39]  R. Gur,et al.  Development of Abbreviated Nine-Item Forms of the Raven’s Standard Progressive Matrices Test , 2012, Assessment.

[40]  Chris Eliasmith,et al.  A Neural Model of Rule Generation in Inductive Reasoning , 2011, Top. Cogn. Sci..

[41]  G. J. Robertson Raven's Progressive Matrices , 2010 .

[42]  Lorenzo Magnani,et al.  Abductive Cognition - The Epistemological and Eco-Cognitive Dimensions of Hypothetical Reasoning , 2009, Cognitive Systems Monographs.

[43]  Pentti Kanerva,et al.  Hyperdimensional Computing: An Introduction to Computing in Distributed Representation with High-Dimensional Random Vectors , 2009, Cognitive Computation.

[44]  Simon D. Levy,et al.  A distributed basis for analogical mapping , 2009 .

[45]  Ross W. Gayler Vector Symbolic Architectures answer Jackendoff's challenges for cognitive neuroscience , 2004, ArXiv.

[46]  Ronald J. Williams,et al.  Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning , 2004, Machine Learning.

[47]  MSc DIC PhD Artur S. d’Avila Garcez MEng,et al.  Neural-Symbolic Learning Systems , 2002, Perspectives in Neural Computing.

[48]  Dmitri A. Rachkovskij,et al.  Binding and Normalization of Binary Sparse Distributed Representations by Context-Dependent Thinning , 2001, Neural Computation.

[49]  G. Marcus The Algebraic Mind: Integrating Connectionism and Cognitive Science , 2001 .

[50]  Tony A. Plate,et al.  Analogy retrieval and processing with distributed vector representations , 2000, Expert Syst. J. Knowl. Eng..

[51]  Christoph von der Malsburg,et al.  The What and Why of Binding The Modeler’s Perspective , 1999, Neuron.

[52]  Pentti Kanerva,et al.  Large Patterns Make Great Symbols: An Example of Learning from Example , 1998, Hybrid Neural Systems.

[53]  Ross W. Gayler,et al.  Multiplicative Binding, Representation Operators & Analogy , 1998 .

[54]  Tony A. Plate,et al.  Holographic reduced representations , 1995, IEEE Trans. Neural Networks.

[55]  David J. Chalmers,et al.  High-level perception, representation, and analogy: a critique of artificial intelligence methodology , 1992, J. Exp. Theor. Artif. Intell..

[56]  M A Just,et al.  From the SelectedWorks of Marcel Adam Just 1990 What one intelligence test measures : A theoretical account of the processing in the Raven Progressive Matrices Test , 2016 .

[57]  J. Fodor,et al.  Connectionism and cognitive architecture: A critical analysis , 1988, Cognition.

[58]  C. von der Malsburg,et al.  Am I Thinking Assemblies , 1986 .

[59]  C. Pollard,et al.  Center for the Study of Language and Information , 2022 .

[60]  Frank Rosenblatt,et al.  PRINCIPLES OF NEURODYNAMICS. PERCEPTRONS AND THE THEORY OF BRAIN MECHANISMS , 1963 .