Posterior distribution preprocessing with the JPDA algorithm: PACsim data set

This paper presents tracking results on the PACsim data set using a framework based on the JPDA algorithm with a posterior distribution preprocessing step. The dataset is a multistatic simulation designed to approximate real-life data. In this paper, we extend the posterior distribution preprocessing technique to include feature data and compare tracking results with and without feature information. Results show that the inclusion of feature data in the preprocessing stage can improve tracking performance. This work also explores the benefits of more extensive parameter tuning for the harder tracking scenarios included in the dataset.

[1]  Yaakov Bar-Shalom,et al.  Sonar tracking of multiple targets using joint probabilistic data association , 1983 .

[2]  Thiagalingam Kirubarajan,et al.  Tracking with classification-aided multiframe data association , 2005 .

[3]  David W. Krout,et al.  Likelihood surface preprocessing with the JPDA algorithm: Metron data set , 2010, 2010 13th International Conference on Information Fusion.

[4]  D. L. Hall,et al.  Mathematical Techniques in Multisensor Data Fusion , 1992 .

[5]  Stefano Coraluppi,et al.  Benchmark Evaluation of Multistatic Trackers , 2006, 2006 9th International Conference on Information Fusion.

[6]  J.W. Pitton,et al.  Multi-Static Sonar Tracking Incorporating Environmentally-Adaptive SNR Estimates , 2006, OCEANS 2006.

[7]  Peter Willett,et al.  GM-CPHD and ML-PDA applied to the Metron multi-static sonar dataset , 2010, 2010 13th International Conference on Information Fusion.

[8]  Lang Hong,et al.  Local motion feature aided ground moving target tracking with GMTI and HRR measurements , 2005, IEEE Transactions on Automatic Control.

[9]  Peter Willett,et al.  Predetection Fusion With Doppler Measurements and Amplitude Information , 2012, IEEE Journal of Oceanic Engineering.

[10]  Evan Hanusa,et al.  Improving contact classification by incorporating an estimate of aspect from track state , 2011, OCEANS'11 MTS/IEEE KONA.

[11]  Y. Bar-Shalom,et al.  Tracking with classification-aided multiframe data association , 2003, IEEE Transactions on Aerospace and Electronic Systems.

[12]  Maya R. Gupta,et al.  Clutter rejection by clustering likelihood-based similarities , 2011, 14th International Conference on Information Fusion.

[13]  J.W. Pitton,et al.  Incorporating Target Strength Into Environmentally-Adaptive Sonar Tracking , 2007, OCEANS 2007 - Europe.

[14]  David Morrison,et al.  PDAFAI vs. PDAFAIwTS: TNO blind dataset and SEABAR '07 , 2009, 2009 12th International Conference on Information Fusion.

[15]  Xuezhi Wang,et al.  Enhanced Multi-Target Tracking with Doppler Measurements , 2007, 2007 Information, Decision and Control.