Plasma proteome profiling reveals biomarker patterns associated with prognosis and therapy selection in glioblastoma multiforme patients

Purpose: Glioblastoma multiforme (GBM) is a frequent and aggressive type of primary brain tumor with a heterogeneous origin. GBM is highly therapy resistant and carries a dismal prognosis for the patient. The purpose of this discovery study was to define candidate plasma biomarker signatures for improved classification and novel means for selecting patients for refined individualized therapy.

[1]  Robert Weil,et al.  Genomic expression patterns distinguish long-term from short-term glioblastoma survivors: a preliminary feasibility study. , 2008, Genomics.

[2]  R. Mirimanoff,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[3]  K. Tanabe,et al.  Cancer immunosuppression and autoimmune disease: beyond immunosuppressive networks for tumour immunity , 2006, Immunology.

[4]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[5]  E. Larsson,et al.  Search for effective therapy against glioblastoma multiforme - Clinical immunisation with autologous glioma cells transduced with the human interferon-gamma gene , 2002 .

[6]  C. Borrebaeck,et al.  Antibody microarrays: current status and key technological advances. , 2006, Omics : a journal of integrative biology.

[7]  J. Renauld,et al.  IL-9 and its Receptor: From Signal Transduction to Tumorigenesis , 2004, Growth factors.

[8]  P. Black,et al.  Prognostic and pathologic significance of quantitative protein expression profiling in human gliomas. , 2001, Clinical cancer research : an official journal of the American Association for Cancer Research.

[9]  C. Wingren,et al.  Transferring proteomic discoveries into clinical practice , 2009, Expert review of proteomics.

[10]  Paul Kremer,et al.  Antitumor vaccination of patients with glioblastoma multiforme: a pilot study to assess feasibility, safety, and clinical benefit. , 2004, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[11]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[12]  C. Miller,et al.  Glioblastoma: Morphologic and molecular genetic diversity , 2007 .

[13]  K. Aldape,et al.  Molecular predictors in glioblastoma: toward personalized therapy. , 2008, Archives of neurology.

[14]  Johan Ingvarsson,et al.  Identification of Protein Expression Signatures Associated with Helicobacter pylori Infection and Gastric Adenocarcinoma Using Recombinant Antibody Microarrays* , 2006, Molecular & Cellular Proteomics.

[15]  Erwin G. Van Meir,et al.  The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. , 2005, Neuro-oncology.

[16]  R. Yamanaka,et al.  Cell- and peptide-based immunotherapeutic approaches for glioma. , 2008, Trends in molecular medicine.

[17]  R. Stupp,et al.  MGMT Methylation Status: The Advent of Stratified Therapy in Glioblastoma? , 2007, Disease markers.

[18]  K. Helin,et al.  Molecular mechanisms in gliomagenesis. , 2005, Advances in cancer research.

[19]  W. Cho,et al.  Contribution of oncoproteomics to cancer biomarker discovery , 2007, Molecular Cancer.

[20]  S. Hanash,et al.  Disease proteomics , 2003, Nature.

[21]  Carsten Peterson,et al.  Detection of pancreatic cancer using antibody microarray‐based serum protein profiling , 2008, Proteomics.

[22]  Yu Shyr,et al.  Proteomic-based prognosis of brain tumor patients using direct-tissue matrix-assisted laser desorption ionization mass spectrometry. , 2005, Cancer research.

[23]  D. T. Wong,et al.  Human body fluid proteome analysis , 2006, Proteomics.

[24]  K. Plate,et al.  VEGF in Brain Tumors , 2000, Journal of Neuro-Oncology.

[25]  C. Borrebaeck,et al.  High-throughput proteomics using antibody microarrays: an update , 2007, Expert review of molecular diagnostics.

[26]  Johan Ingvarsson,et al.  Recombinant antibody microarrays—a viable option? , 2003, Nature Biotechnology.

[27]  C. Balañà,et al.  Translational research in glioblastoma multiforme: molecular criteria for patient selection. , 2008, Future oncology.

[28]  Brian B Haab,et al.  Applications of antibody array platforms. , 2006, Current opinion in biotechnology.

[29]  T. Mosmann,et al.  The role of IL-10 in crossregulation of TH1 and TH2 responses. , 1991, Immunology today.

[30]  Mårten Fernö,et al.  Serum proteome profiling of metastatic breast cancer using recombinant antibody microarrays. , 2008, European journal of cancer.

[31]  F. White,et al.  Uncovering Therapeutic Targets FOR Glioblastoma: A Systems Biology Approach , 2007, Cell cycle.

[32]  Forest M White,et al.  Quantitative analysis of EGFRvIII cellular signaling networks reveals a combinatorial therapeutic strategy for glioblastoma , 2007, Proceedings of the National Academy of Sciences.

[33]  H. Lyerly,et al.  Vascular endothelial growth factor and immunosuppression in cancer: current knowledge and potential for new therapy , 2007, Expert opinion on biological therapy.

[34]  A. Chakravarti,et al.  Biomarkers of Clinical Responsiveness in Brain Tumor Patients , 2008, Molecular Diagnosis & Therapy.

[35]  F. Howe,et al.  Serum alpha 2-HS glycoprotein predicts survival in patients with glioblastoma. , 2008, Clinical chemistry.

[36]  S. Kingsmore Multiplexed protein measurement: technologies and applications of protein and antibody arrays , 2006, Nature Reviews Drug Discovery.

[37]  E. Söderlind,et al.  Recombining germline-derived CDR sequences for creating diverse single-framework antibody libraries , 2000, Nature Biotechnology.

[38]  Thomas D. Wu,et al.  Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. , 2006, Cancer cell.

[39]  Elisabet Englund,et al.  Microarray analysis of gliomas reveals chromosomal position-associated gene expression patterns and identifies potential immunotherapy targets , 2007, Journal of Neuro-Oncology.

[40]  Mahlon D. Johnson,et al.  Protein Profiling in Brain Tumors Using Mass Spectrometry , 2004, Clinical Cancer Research.

[41]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[42]  G. Broggi,et al.  Intracavitary VEGF, bFGF, IL-8, IL-12 levels in primary and recurrent malignant glioma , 2003, Journal of Neuro-Oncology.

[43]  C. Borrebaeck,et al.  Antibody microarray analysis of directly labelled complex proteomes. , 2008, Current opinion in biotechnology.

[44]  C. Borrebaeck,et al.  Progress in miniaturization of protein arrays--a step closer to high-density nanoarrays. , 2007, Drug discovery today.

[45]  L. Truedsson,et al.  Design of recombinant antibody microarrays for serum protein profiling: targeting of complement proteins. , 2007, Journal of proteome research.

[46]  R. Britto,et al.  Novel Glioblastoma Markers with Diagnostic and Prognostic Value Identified through Transcriptome Analysis , 2008, Clinical Cancer Research.

[47]  J. Mantil,et al.  Phase I clinical trial of a TGF-β antisense-modified tumor cell vaccine in patients with advanced glioma , 2006, Cancer Gene Therapy.

[48]  D. Carbone,et al.  Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. , 1998, Journal of immunology.

[49]  D. Busam,et al.  An Integrated Genomic Analysis of Human Glioblastoma Multiforme , 2008, Science.

[50]  Johan Ingvarsson,et al.  Design of recombinant antibody microarrays for complex proteome analysis: Choice of sample labeling‐tag and solid support , 2007, Proteomics.

[51]  S. Hanash Disease proteomics : Proteomics , 2003 .

[52]  Akira Yamaura,et al.  Molecular Classification and Survival Prediction in Human Gliomas Based on Proteome Analysis , 2004, Cancer Research.

[53]  X. Bian,et al.  Production of angiogenic factors by human glioblastoma cells following activation of the G-protein coupled formylpeptide receptor FPR , 2007, Journal of Neuro-Oncology.

[54]  C. Wingren,et al.  Design of high-density antibody microarrays for disease proteomics: key technological issues. , 2009, Journal of proteomics.

[55]  J. Sandoval,et al.  Applications of emerging molecular technologies in glioblastoma multiforme , 2008, Expert review of neurotherapeutics.

[56]  P. Kleihues,et al.  Epidemiology and etiology of gliomas , 2005, Acta Neuropathologica.

[57]  Pedro Martínez,et al.  Identification of survival‐related genes of the phosphatidylinositol 3′‐kinase signaling pathway in glioblastoma multiforme , 2008, Cancer.

[58]  J. Renauld,et al.  JAK kinases overexpression promotes in vitro cell transformation , 2008, Oncogene.