Convex trace functions and the Wigner-Yanase-Dyson conjecture
暂无分享,去创建一个
[1] E. Lieb,et al. Proof of the strong subadditivity of quantum‐mechanical entropy , 1973 .
[2] H. Epstein. Remarks on two theorems of E. Lieb , 1973 .
[3] Elliott H. Lieb,et al. A Fundamental Property of Quantum-Mechanical Entropy , 1973 .
[4] M. Breitenecker,et al. Note on trace inequalities , 1972 .
[5] Mary Beth Ruskai,et al. Inequalities for traces on von Neumann algebras , 1972 .
[6] R. Jost,et al. REMARKS ON A CONJECTURE OF ROBINSON AND RUELLE CONCERNING THE QUANTUM MECHANICAL ENTROPY. , 1969 .
[7] Derek W. Robinson,et al. Mean Entropy of States in Quantum‐Statistical Mechanics , 1968 .
[8] Derek W. Robinson,et al. Mean entropy of states in classical statistical mechanics , 1967 .
[9] C. Thompson. Inequality with Applications in Statistical Mechanics , 1965 .
[10] S. Golden. LOWER BOUNDS FOR THE HELMHOLTZ FUNCTION , 1965 .
[11] Eugene P. Wigner,et al. On the Positive Semidefinite Nature of a Certain Matrix Expression , 1964, Canadian Journal of Mathematics.
[12] E. Wigner,et al. INFORMATION CONTENTS OF DISTRIBUTIONS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.
[13] S. Sherman,et al. Monotone and convex operator functions , 1955 .
[14] F. Kraus. Über konvexe Matrixfunktionen , 1936 .