The Cayley transform in the numerical solution of unitary differential systems
暂无分享,去创建一个
[1] P. Hartman. Ordinary Differential Equations , 1965 .
[2] L. Dieci,et al. Computation of a few Lyapunov exponents for continuous and discrete dynamical systems , 1995 .
[3] Fasma Diele,et al. One step semi-explicit methods based on the Cayley transform for solving isospectral flows , 1998 .
[4] Antonella Zanna,et al. Numerical solution of isospectral flows , 1997, Math. Comput..
[5] Luciano Lopez,et al. Numerical procedures based on Runge-Kutta methods for solving isospectral flows , 1997 .
[6] Gene H. Golub,et al. Matrix computations , 1983 .
[7] A. Perelomov. The Toda Lattice , 1990 .
[8] Desmond J. Higham,et al. Runge-Kutta type methods for orthogonal integration , 1996 .
[9] J. M. Sanz-Serna,et al. Numerical Hamiltonian Problems , 1994 .
[10] D. Higham. Time-stepping and preserving orthonormality , 1997 .
[11] R. Russell,et al. On the Compuation of Lyapunov Exponents for Continuous Dynamical Systems , 1997 .
[12] H. Flaschka. The Toda lattice. II. Existence of integrals , 1974 .
[13] Moody T. Chu,et al. Scaled Toda-like flows , 1995 .
[14] John B. Moore,et al. Numerical Gradient Algorithms for Eigenvalue and Singular Value Calculations , 1994 .
[15] Luciano Lopez,et al. Variable step-size techniques in continuous Runge-Kutta methods for isospectral dynamical systems , 1997 .
[16] R. Russell,et al. Unitary integrators and applications to continuous orthonormalization techniques , 1994 .
[17] A. Iserles,et al. Runge-Kutta methods for orthogonal and isospectral flows , 1996 .