Mechanical properties for a series of Zr-based bulk metallic glasses

[1]  N. Boudet,et al.  Relationship between atomic structure and excellent glass forming ability in Pd42.5Ni, 2022, Journal of Non-Crystalline Solids.

[2]  Q. An,et al.  Crystallization behavior of a series of Zr-based metallic glasses , 2022, Thermochimica Acta.

[3]  X. Xu,et al.  Recent development in the application of bulk metallic glasses , 2022, Journal of Materials Science & Technology.

[4]  J. Qiao,et al.  Unraveling the microstructural heterogeneity and plasticity of Zr50Cu40Al10 bulk metallic glass by nanoindentation , 2022, International Journal of Plasticity.

[5]  Yihao Wang,et al.  Si-alloying effect on glass-forming ability and crystallization behavior of Zr72.5Al10Fe17.5 metallic glass , 2022, Journal of Non-Crystalline Solids.

[6]  G. Wilde,et al.  Comparative study of thermal stability and crystallization kinetics between melt-spun and bulk Pd77.5Cu6Si16.5 metallic glasses , 2022, Journal of Materials Research and Technology.

[7]  S. Pauly,et al.  Osteogenesis and angiogenesis of a bulk metallic glass for biomedical implants , 2021, Bioactive materials.

[8]  F. Li,et al.  Anomalous short-to-medium-range structural characteristics of P in Pd43Ni43P14 and Pd40Ni40P20 glass-forming liquids , 2020 .

[9]  Yong Yang,et al.  Structural heterogeneities and mechanical behavior of amorphous alloys , 2019, Progress in Materials Science.

[10]  Woochul Kim,et al.  Effect of quenching temperature on local ordering in Al85Ni5Co2Y8 metallic glass , 2019, Journal of Alloys and Compounds.

[11]  Yuan Wu,et al.  Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications , 2019, Progress in Materials Science.

[12]  Ye Pan,et al.  Short-range ordering in metallic supercooled liquids and glasses , 2019, Journal of Alloys and Compounds.

[13]  W. Guo,et al.  Thermal rejuvenation of a heterogeneous metallic glass , 2018, Journal of Non-Crystalline Solids.

[14]  M. Mazroui,et al.  Short and medium-range orders in Co3Al metallic glass , 2018, Chemical Physics.

[15]  Zhaoping Lu,et al.  Effects of cooling rate on the atomic structure of Cu64Zr36 binary metallic glass , 2018 .

[16]  W. Guo,et al.  Unusual plasticization for structural relaxed bulk metallic glass , 2017 .

[17]  C. Dong,et al.  Formation and structure-property correlation of new bulk Fe-B-Si-Hf metallic glasses , 2016 .

[18]  C. Dong,et al.  Composition design procedures of Ti-based bulk metallic glasses using the cluster-plus-glue-atom model , 2016 .

[19]  Hong Wu,et al.  A Series of Zr-Based Bulk Metallic Glasses with Room Temperature Plasticity , 2016, Materials.

[20]  M. Kramer,et al.  Medium-range structure and glass forming ability in Zr–Cu–Al bulk metallic glasses , 2016 .

[21]  Christopher A. Schuh,et al.  Deformation of metallic glasses: Recent developments in theory, simulations, and experiments , 2016 .

[22]  Yufeng Zheng,et al.  Recent advances in bulk metallic glasses for biomedical applications. , 2016, Acta biomaterialia.

[23]  C. Dong,et al.  Composition interpretation of binary bulk metallic glasses via principal cluster definition , 2016 .

[24]  A. L. Greer,et al.  Structural feature of Cu64Zr36 metallic glass on nanoscale: Densely-packed clusters with loosely-packed surroundings , 2016 .

[25]  W. Wang,et al.  Rejuvenation of metallic glasses by non-affine thermal strain , 2015, Nature.

[26]  E. Ma Tuning order in disorder. , 2015, Nature materials.

[27]  Xunhui Xiong,et al.  Design of Zr–Al–Ni–Cu bulk metallic glasses with network structures , 2014 .

[28]  Riping Liu,et al.  Structural, elastic, electronic, and thermodynamic properties of intermetallic Zr2Cu: A first-principles study , 2014 .

[29]  D. Weitz,et al.  Local shear transformations in deformed and quiescent hard-sphere colloidal glasses. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Y. Kawazoe,et al.  Determining characteristic principal clusters in the “cluster-plus-glue-atom” model , 2014 .

[31]  E. Ma,et al.  Full icosahedra dominate local order in Cu64Zr34 metallic glass and supercooled liquid , 2014 .

[32]  Samuel S. Schoenholz,et al.  Understanding plastic deformation in thermal glasses from single-soft-spot dynamics , 2014, 1404.1403.

[33]  Karin A. Dahmen,et al.  Tuned Critical Avalanche Scaling in Bulk Metallic Glasses , 2014, Scientific Reports.

[34]  C. Rycroft,et al.  Fracture toughness of metallic glasses: annealing-induced embrittlement. , 2012, Physical review letters.

[35]  Weihua Wang The elastic properties, elastic models and elastic perspectives of metallic glasses , 2012 .

[36]  A. Takeuchi,et al.  Recent development and application products of bulk glassy alloys , 2011 .

[37]  K. Daniels,et al.  Granular Controls on Periodicity of Stick-Slip Events: Kinematics and Force-Chains in an Experimental Fault , 2011 .

[38]  Akihiko Hirata,et al.  Direct observation of local atomic order in a metallic glass. , 2011, Nature materials.

[39]  X. J. Liu,et al.  Correlation between primary phases and atomic clusters in a Zr-based metallic glass , 2010 .

[40]  Zi-kui Liu,et al.  High-zirconium-based bulk metallic glasses with large plasticity , 2010 .

[41]  Jun Shen,et al.  Self-organized intermittent plastic flow in bulk metallic glasses , 2009 .

[42]  J. Schroers,et al.  Embrittlement of Zr-based bulk metallic glasses , 2009 .

[43]  X. J. Liu,et al.  Local atomic structures in Zr-Ni metallic glasses , 2009 .

[44]  A. Yavari,et al.  Malleable hypoeutectic Zr–Ni–Cu–Al bulk glassy alloys with tensile plastic elongation at room temperature , 2009 .

[45]  E. Ma,et al.  Local order influences initiation of plastic flow in metallic glass: Effects of alloy composition and sample cooling history , 2008 .

[46]  Anaël Lemaître,et al.  Plastic response of a two-dimensional amorphous solid to quasistatic shear: transverse particle diffusion and phenomenology of dissipative events. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Xiao-Dong Wang,et al.  Effect of Zr/Ni ratio on the stability and ductility of Zr–Al–Ni–Cu bulk metallic glasses , 2007 .

[48]  Gang Wang,et al.  Super Plastic Bulk Metallic Glasses at Room Temperature , 2007, Science.

[49]  T. Nieh,et al.  Effect of the nanoindentation rate on the shear band formation in an Au-based bulk metallic glass , 2007 .

[50]  Ju Li,et al.  Yield point of metallic glass , 2006 .

[51]  J. Barrat,et al.  Plastic response of a 2D Lennard-Jones amorphous solid: Detailed analysis of the local rearrangements at very slow strain rate , 2006, The European physical journal. E, Soft matter.

[52]  P. Murali,et al.  Embrittlement of a bulk metallic glass due to sub-Tg annealing , 2005 .

[53]  J. Eckert,et al.  Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5 metallic glass , 2004 .

[54]  Y. Umakoshi,et al.  Phase stability of amorphous and crystalline phases in melt-spun Zr66.7Cu33.3 alloy under electron irradiation , 2003 .

[55]  Y. Golovin,et al.  Serrated plastic flow during nanoindentation of a bulk metallic glass , 2001 .

[56]  A. Inoue Stabilization of metallic supercooled liquid and bulk amorphous alloys , 2000 .

[57]  A. Yavari,et al.  In situ crystallization of Zr55Cu30Al10Ni5 bulk glass forming from the glassy and undercooled liquid states using synchrotron radiation , 1999 .

[58]  Turnbull,et al.  Elastic behavior and vibrational anharmonicity of a bulk Pd40Ni40P20 metallic glass. , 1986, Physical review. B, Condensed matter.