Saturable absorption behavior of free-standing graphene polymer composite films over broad wavelength and time ranges.

A comparative research on saturable absorption (SA) behavior dependence on wavelength and pulse duration was performed for graphene polymer composites. Free-standing graphene-polyvinyl alcohol (PVA) composite films were fabricated by using solution cast method in combination of liquid phase exfoliation. SA responses were observed by using an open-aperture Z-scan technique for 340 fs pulses at 1030 nm and 515 nm from a mode-locked fiber laser, and 6 ns pulses at 1064 nm and 532 nm from a Q-switched Nd:YAG laser. The graphene films possess better SA property, i.e., larger SA coefficient and figure of merit (FOM), and lower saturation intensity I(s), for ns pulses than that for fs pulses at the similar near infrared (NIR) wavelength. For fs pulses, the films show better SA response at 1030 nm than that at 515 nm. By employing slow and fast SA modelling, the excited state and ground state absorption cross sections were estimated to be ~10(-17) cm(2), and the ratio was ~0.6 at NIR for both fs and ns pulses.

[1]  U. Keller Recent developments in compact ultrafast lasers , 2003, Nature.

[2]  Yiyu Feng,et al.  Functionalized few-walled carbon nanotubes for mechanical reinforcement of polymeric composites. , 2009, ACS nano.

[3]  M. Tilsch,et al.  Semiconductor saturable absorber mirrors supporting sub-10-fs pulses , 1997 .

[4]  A. Demaria,et al.  Self Mode-Locking of Lasers with Saturable Absorbers , 1966 .

[5]  H. Zidan Structural properties of CrF3‐ and MnCl2‐filled poly(vinyl alcohol) films , 2003 .

[6]  Michael Hercher,et al.  An analysis of saturable absorbers. , 1967, Applied optics.

[7]  Zhipei Sun,et al.  A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser , 2010 .

[8]  F. Torrisi,et al.  Graphene Q-switched, tunable fiber laser , 2010, 1011.0115.

[9]  Tze Chien Sum,et al.  The Physics of ultrafast saturable absorption in graphene. , 2010, Optics express.

[10]  D. Basko,et al.  Graphene mode-locked ultrafast laser. , 2009, ACS nano.

[11]  Michael G. Spencer,et al.  Measurement of Ultrafast Carrier Dynamics in Epitaxial Graphene , 2008 .

[12]  Minquan Tian,et al.  Semiconductor Carbon Nanotubes as Ultrafast Switching Materials for Optical Telecommunications , 2003 .

[13]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[14]  Mitsuru Tanahashi Development of Fabrication Methods of Filler/Polymer Nanocomposites: With Focus on Simple Melt-Compounding-Based Approach without Surface Modification of Nanofillers , 2010, Materials.

[15]  Mustafa Lotya,et al.  Graphene incorporated Q-switching of a polarization-maintaining Yb-doped fiber laser , 2012 .

[16]  Ian H. White,et al.  Carbon Nanotube Polycarbonate Composites for Ultrafast Lasers , 2008 .

[17]  J. Coleman,et al.  High-yield production of graphene by liquid-phase exfoliation of graphite. , 2008, Nature nanotechnology.

[18]  S. Kamel,et al.  Nanotechnology and its applications in lignocellulosic composites, a mini review , 2007 .

[19]  Graphene analogue BCN: femtosecond nonlinear optical susceptibility and hot carrier dynamics , 2010, 1010.2332.

[20]  L. Frantz,et al.  Theory of Pulse Propagation in a Laser Amplifier , 1963 .

[21]  Nonlinear pulse-shaping phenomena of semiconductor saturable absorber mirror , 2006 .

[22]  E. W. Stryland,et al.  Sensitive Measurement of Optical Nonlinearities Using a Single Beam Special 30th Anniversary Feature , 1990 .

[23]  Mustafa Lotya,et al.  Broadband Nonlinear Optical Response of Graphene Dispersions , 2009 .

[24]  Kwang S. Kim,et al.  Large-scale pattern growth of graphene films for stretchable transparent electrodes , 2009, Nature.

[25]  Kestur Gundappa Satyanarayana,et al.  Nanocomposites: synthesis, structure, properties and new application opportunities , 2009 .

[26]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[27]  C. N. R. Rao,et al.  Femtosecond carrier dynamics and saturable absorption in graphene suspensions , 2009 .

[28]  Hamzah Arof,et al.  Q-switched Er-doped fiber laser with low pumping threshold using graphene saturable absorber , 2014 .

[29]  F. Kärtner,et al.  Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers , 1996 .

[30]  T. Ho,et al.  Effects of iron oxide nanoparticles on polyvinyl alcohol: interfacial layer and bulk nanocomposites thin film , 2010 .

[31]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[32]  Jun Wang,et al.  Linearly Polarized 1180-nm Raman Fiber Laser Mode Locked by Graphene , 2012, IEEE Photonics Journal.

[33]  W. Ji,et al.  AgInSe2 nanorods: A semiconducting material for saturable absorber , 2007 .

[34]  Yehoshua Kalisky,et al.  Excited-state absorption studies of Cr/sup 4+/ ions in several garnet host crystals , 1998 .

[35]  Zhi-Chao Luo,et al.  Graphene-based, 50 nm wide-band tunable passively Q-switched fiber laser , 2011 .

[36]  T. Sajavaara,et al.  Broadband semiconductor saturable absorber mirrors in the 1.55-/spl mu/m wavelength range for pulse generation in fiber lasers , 2002 .

[37]  J. Coleman,et al.  Towards Solutions of Single‐Walled Carbon Nanotubes in Common Solvents , 2008 .

[38]  Jingsong Wei,et al.  False nonlinear effect in z -scan measurement based on semiconductor laser devices: theory and experiments , 2014 .

[39]  M. Nathan,et al.  Saturable absorption of multi-walled carbon nanotubes/hybrid-glass composites , 2012 .

[40]  V. Zapasskii,et al.  Chasing 'slow light' , 2006 .

[41]  J. Coleman,et al.  Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors. , 2014, Nanoscale.

[42]  K. Novoselov,et al.  Giant intrinsic carrier mobilities in graphene and its bilayer. , 2007, Physical review letters.

[43]  S. Guha,et al.  Broadband saturable absorption and optical limiting in graphene-polymer composites , 2013 .

[44]  I H White,et al.  Wideband-tuneable, nanotube mode-locked, fibre laser. , 2008, Nature nanotechnology.

[45]  J. Coleman,et al.  Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. , 2013, ACS nano.