Adsorption and structure of Lennard–Jones model fluid in slit-like amorphous silica nanopores

[1]  Xiaoning Yang,et al.  Molecular dynamics simulation of dense carbon dioxide fluid on amorphous silica surfaces. , 2006, Journal of colloid and interface science.

[2]  D. Do,et al.  The effects of energy sites on adsorption of Lennard-Jones fluids and phase transition in carbon slit pore of finite length a computer simulation study. , 2006, Journal of colloid and interface science.

[3]  M. Rozwadowski,et al.  Effect of various pillaring oxides on adsorption behaviour of novel MCM-36 derivatives , 2006 .

[4]  K. Gubbins,et al.  Adsorption of simple gases in MCM-41 materials: the role of surface roughness. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[5]  D. Morineau,et al.  Interfacial structure of an H-bonding liquid confined into silica nanopore with surface silanols , 2005 .

[6]  Jincheng Du,et al.  Molecular Dynamics Simulation of the Structure and Hydroxylation of Silica Glass Surfaces , 2005 .

[7]  G. Tompsett,et al.  Hysteresis and scanning behavior of mesoporous molecular sieves. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[8]  Yushan Yan,et al.  Organic-functionalized pure-silica-zeolite MFI low-k films , 2005 .

[9]  D. Do,et al.  Comparative adsorption of spherical argon and flexible n-butane in carbon slit pores—a GCMC computer simulation study , 2005 .

[10]  C. Pantano,et al.  Mechanisms for Silanol Formation on Amorphous Silica Fracture Surfaces , 2004 .

[11]  R. Pellenq,et al.  A grand canonical Monte Carlo study of capillary condensation in mesoporous media: effect of the pore morphology and topology. , 2004, The Journal of chemical physics.

[12]  R. Denoyel,et al.  Modeling of pore wall amorphous structures: influence of wall heterogeneity on the mechanism of adsorption Krypton and Argon adsorption in MCM-41 pore model , 2004 .

[13]  R. Denoyel,et al.  Modeling of pore wall amorphous structures: influence of wall heterogeneity on the mechanism of adsorption , 2004 .

[14]  R. Pellenq,et al.  A comparison of water adsorption on ordered and disordered silica substratesPresented at the 81st International Bunsen Discussion Meeting on , 2004 .

[15]  R. Pellenq,et al.  Grand canonical Monte Carlo simulation of argon adsorption at the surface of silica nanopores: effect of pore size, pore morphology, and surface roughness. , 2004, The Journal of chemical physics.

[16]  T. Tsuru,et al.  Molecular dynamics study of gas permeation through amorphous silica network and inter-particle pores on microporous silica membranes , 2004 .

[17]  N. Seaton,et al.  Experimental and computer simulation studies of the adsorption of ethane, carbon dioxide, and their binary mixtures in MCM-41 , 2003 .

[18]  R. Denoyel,et al.  Monte Carlo simulations of krypton adsorption in nanopores: Influence of pore-wall heterogeneity on the adsorption mechanism , 2003 .

[19]  Carlo G. Pantano,et al.  Computer modeling of water adsorption on silica and silicate glass fracture surfaces , 2003 .

[20]  Karen Maex,et al.  Low dielectric constant materials for microelectronics , 2003 .

[21]  A. Dmytruk,et al.  Spectral Investigation of Physical Adsorption in Porous Glass , 2003 .

[22]  T. Tsuru,et al.  Molecular dynamics studies on gas permeation properties through microporous silica membranes , 2001 .

[23]  Z. Sokołowska,et al.  Capillary Condensation in Pores with Energetically Heterogeneous Walls: Density Functional versus Monte Carlo Calculations. , 2001, Journal of colloid and interface science.

[24]  E. Iglesia,et al.  Simulations of the structure and properties of amorphous silica surfaces , 2001 .

[25]  M. Morbidelli,et al.  Adsorption of Supercritical Carbon Dioxide on Silica , 2001 .

[26]  S. Garofalini,et al.  Modeling of hydrophilic wafer bonding by molecular dynamics simulations , 2001 .

[27]  A. Myers,et al.  Molecular simulation of adsorption: Gibbs dividing surface and comparison with experiment , 2001 .

[28]  K. Gubbins,et al.  Phase separation in confined systems , 1999 .

[29]  W. A. Steele,et al.  On the computer simulation of a hydrophobic vitreous silica surface , 1999 .

[30]  A. Soper,et al.  Water confined in Vycor glass. I. A neutron diffraction study , 1998 .

[31]  T. W. Żerda,et al.  Properties of liquid acetone in silica pores: Molecular dynamics simulation , 1996 .

[32]  T. W. Żerda,et al.  Molecular dynamics of SF6 in porous silica , 1991 .

[33]  S. Garofalini,et al.  Empirical three‐body potential for vitreous silica , 1988 .

[34]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[35]  S. Garofalini,et al.  Structural Role of Zinc Oxide in Silica and Soda‐Silica Glasses , 1987 .

[36]  K. Gubbins,et al.  Phase transitions in a cylindrical pore , 1987 .

[37]  C. Angell,et al.  Molecular dynamics studies of the vitreous state: Simple ionic systems and silica , 1976 .

[38]  R. Mozzi,et al.  The structure of vitreous silica , 1969 .

[39]  J. A. Hockey,et al.  Heats of Immersion in Water of Characterized Silicas of Varying Specific Surface Area , 1966 .

[40]  Christopher K. Ober,et al.  An overview of supercritical CO 2 applications in microelectronics processing , 2003 .

[41]  A. Legrand,et al.  The surface properties of silicas , 1998 .