Fluid flow phenomenon in a three-bladed power-generating Archimedes screw turbine

Experimental studies of the Archimedes screw turbine are applied as a micro hydro power plant for low head focused on the fluid flow. Fluid flow on a screw turbine is not completely filled water flow there is still a free surface between the water fluid and atmospheric air. Except the screw geometry, the turbine screw free surface allows the flow phenomena that are important in the process of turbine screw power generation. The Archimedes screw turbine main driving force is the fluid-gravity weight, which is affected by the inflow depth, inflow velocity and the turbine shaft’s slope. The dimensionless parameter Froude number (Fr) is connected to analyze the screw turbine efficiency. The purpose of this study is to figure out the fluid flow role when power generated by a three blades Archimedes screw turbine observed visualized, and also observed the turbine rotation and torque. The observed parameters are varied in inflow depth as the characteristic length (y) of Froude Number, inflow velocity (co), and the turbine shaft slope (α). The screw turbine model, were made under a laboratory scale and made from acrylic material. The geometric form is the three bladed screws which have seven screw respectively, the number of helix turns is 21, the angle of screw blade is 30°, radius ratio of 0.54 with a pitch distance of 2,4 Ro. The result from this study revealed a phenomenon of fluid flow between the screw blades a whirlpool wave occurs or vortex due to the linear momentum in a form of the hydrostatic force against the blade screw which occurs in two opposite directions and the effect of the turbine shaft angular momentum. The vortex would affect the screw turbine power generation process as most of the kinetic energy that goes into the screw turbine sucked into the vortex between the screw blades, but this phenomenon can be reduced by reducing the turbine shaft slope. The highest turbine efficiency of 89% occurred in the turbine shaft’s slope of 25° and a flow rate of 0.5 m/s and a 1Ro characteristic length and a 0,12 Froude number.