Ion exchange kinetics of fission products between molten salt and zeolite-A

[1]  T. Yoo,et al.  Salt-Zeolite Ion-Exchange Equilibrium Studies for a Complete Set of Fission Products in Molten LiCl-KCl , 2010 .

[2]  A. M. El-kamash,et al.  Evaluation of zeolite A for the sorptive removal of Cs+ and Sr2+ ions from aqueous solutions using batch and fixed bed column operations. , 2008, Journal of hazardous materials.

[3]  Michael F. Simpson,et al.  Equilibrium model for ion exchange between multivalent cations and zeolite‐A in a molten salt , 2005 .

[4]  Barry E. Scheetz,et al.  Two-site equilibrium model for ion exchange between multi-valent cations and zeolite-A in a molten salt , 2005 .

[5]  Michael F. Simpson,et al.  Two-Site Equilibrium Model for Ion Exchange between Monovalent Cations and Zeolite-A in a Molten Salt , 2003 .

[6]  Dusan Lexa,et al.  Occlusion and ion exchange in the molten (lithium chloride+potassium chloride+alkaline-earth chloride) salt+zeolite 4A system with alkaline-earth chlorides of calcium and strontium and in the molten (lithium chloride+potassium chloride+actinide chloride) salt+zeolite 4A system with the actinide chlo , 2003 .

[7]  I. Johnson,et al.  Occlusion and ion exchange in the molten (lithium chloride-potassium chloride-alkali metal chloride) salt + zeolite 4A system with alkali metal chlorides of sodium, rubidium, and cesium , 2001 .

[8]  Y. Ho,et al.  Pseudo-second order model for sorption processes , 1999 .

[9]  H. K. Geyer,et al.  Modeling of a Zeolite Column for the Removal of Fission Products from Molten Salt , 1998 .

[10]  S. Sundaresan,et al.  Kinetic Analysis of Isobutane/Butene Alkylation over Ultrastable H−Y Zeolite , 1996 .

[11]  J. G. Gupta,et al.  Direct ICP-MS determination of trace and ultratrace elements in geological materials after decomposition in a microwave oven. Part II. Quantitation of Ba, Cs, Ga, Hf, In, Mo, Nb, Pb, Rb, Sn, Sr, Ta and Tl. , 1995, Talanta.

[12]  J. G. Gupta,et al.  Direct ICP-MS determination of trace and ultratrace elements in geological materials after decomposition in a microwave oven. I. Quantitation of Y, Th, U and the lanthanides. , 1995, Talanta.

[13]  J. G. Gupta,et al.  Direct determination of traces of Ag, Cd, Pb, Bi, Cr, Mn, Co, Ni, Li, Be, Cu and Sb in environmental waters and geological materials by simultaneous multi-element graphite furnace atomic absorption spectrometry with Zeeman-effect background correction. , 1995, Talanta.

[14]  J. E. Battles,et al.  Electrorefining of uranium and plutonium - A literature review , 1992 .

[15]  K W Kolasniski,et al.  ZUR THEORIE DER SOGENANNTEN ADSORPTION GELÖSTER STOFFE. KUNGLIGA SVENSKA VETENSKAPSAKADEMIENS , 2001 .

[16]  J. J. Laidler,et al.  Development of pyroprocessing technology , 1997 .

[17]  J. Klinowski,et al.  Zeolite RHO. Part 2.—Cation exchange equilibria and kinetics , 1980 .

[18]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .