Receding horizon revisited: An easy way to robustly stabilize an LTV system

[1]  Gilead Tadmor,et al.  The standard H ∞ problem and the maximum principle: the general linear case , 1993 .

[2]  Gilead Tadmor,et al.  H ∞ optimal sampled-data control in continuous time systems , 1992 .

[3]  P. Khargonekar,et al.  H ∞ control of linear time-varying systems: a state-space approach , 1991 .

[4]  Gilead Tadmor,et al.  Worst-case design in the time domain: The maximum principle and the standardH∞ problem , 1990, Math. Control. Signals Syst..

[5]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[6]  Gilead Tadmor,et al.  Input/output norms in general linear systems , 1990 .

[7]  G. Tadmor,et al.  Time domain optimal control and worst case linear system design , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[8]  I. Rhee,et al.  A game theoretic controller and its relationship to H/sub infinity / and linear-exponential-Gaussian synthesis , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[9]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[10]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.

[11]  J. Ball,et al.  Sensitivity minimization in an H ∞ norm: parametrization of all suboptimal solutions , 1987 .

[12]  B. Francis,et al.  A Course in H Control Theory , 1987 .

[13]  W. Kwon,et al.  A modified quadratic cost problem and feedback stabilization of a linear system , 1977 .

[14]  Y. Thomas Linear quadratic optimal estimation and control with receding horizon , 1975 .

[15]  D. Kleinman,et al.  An easy way to stabilize a linear constant system , 1970 .

[16]  E B Lee,et al.  Foundations of optimal control theory , 1967 .