SIDE CHANNEL ATTACKS ON ELLIPTIC CURVE CRYPTOSYSTEMS

[1]  Thomas S. Messerges,et al.  Using Second-Order Power Analysis to Attack DPA Resistant Software , 2000, CHES.

[2]  Victor S. Miller,et al.  Use of Elliptic Curves in Cryptography , 1985, CRYPTO.

[3]  Steven D. Galbraith,et al.  A Cryptographic Application of Weil Descent , 1999, IMACC.

[4]  Paul C. Kocher,et al.  Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems , 1996, CRYPTO.

[5]  Tsuyoshi Takagi,et al.  On the Exact Flexibility of the Flexible Countermeasure Against Side Channel Attacks , 2004, ACISP.

[6]  C. D. Walter,et al.  Breaking the Liardet-Smart Randomized Exponentiation Algorithm , 2002, CARDIS.

[7]  T. Elgamal A public key cryptosystem and a signature scheme based on discrete logarithms , 1984, CRYPTO 1984.

[8]  Ian F. Blake,et al.  Elliptic curves in cryptography , 1999 .

[9]  Tsuyoshi Takagi,et al.  The Width-w NAF Method Provides Small Memory and Fast Elliptic Scalar Multiplications Secure against Side Channel Attacks , 2003, CT-RSA.

[10]  Nigel P. Smart,et al.  Preventing SPA/DPA in ECC Systems Using the Jacobi Form , 2001, CHES.

[11]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[12]  Kouichi Sakurai,et al.  On Insecurity of the Side Channel Attack Countermeasure Using Addition-Subtraction Chains under Distinguishability between Addition and Doubling , 2002, ACISP.

[13]  Richard J. Lipton,et al.  On the Importance of Checking Cryptographic Protocols for Faults (Extended Abstract) , 1997, EUROCRYPT.

[14]  N. Koblitz Elliptic curve cryptosystems , 1987 .

[15]  Robert H. Sloan,et al.  Power Analysis Attacks of Modular Exponentiation in Smartcards , 1999, CHES.

[16]  Kouichi Sakurai,et al.  A Second-Order DPA Attack Breaks a Window-Method Based Countermeasure against Side Channel Attacks , 2002, ISC.

[17]  Elisabeth Oswald,et al.  Enhancing Simple Power-Analysis Attacks on Elliptic Curve Cryptosystems , 2002, CHES.

[18]  Bodo Möller,et al.  Improved Techniques for Fast Exponentiation , 2002, ICISC.

[19]  Bodo Möller,et al.  Parallelizable Elliptic Curve Point Multiplication Method with Resistance against Side-Channel Attacks , 2002, ISC.

[20]  Alfred Menezes,et al.  Handbook of Applied Cryptography , 2018 .

[21]  Tsuyoshi Takagi,et al.  A Fast Parallel Elliptic Curve Multiplication Resistant against Side Channel Attacks , 2002, Public Key Cryptography.

[22]  Manfred Josef Aigner,et al.  Randomized Addition-Subtraction Chains as a Countermeasure against Power Attacks , 2001, CHES.

[23]  Marc Joye,et al.  Checking Before Output May Not Be Enough Against Fault-Based Cryptanalysis , 2000, IEEE Trans. Computers.

[24]  Kouichi Sakurai,et al.  Power Analysis Breaks Elliptic Curve Cryptosystems even Secure against the Timing Attack , 2000, INDOCRYPT.

[25]  Thomas S. Messerges,et al.  Investigations of Power Analysis Attacks on Smartcards , 1999, Smartcard.

[26]  Tsuyoshi Takagi,et al.  A More Flexible Countermeasure against Side Channel Attacks Using Window Method , 2003, CHES.

[27]  Bodo Möller,et al.  Securing Elliptic Curve Point Multiplication against Side-Channel Attacks , 2001, ISC.

[28]  Jean-Sébastien Coron,et al.  Resistance against Differential Power Analysis for Elliptic Curve Cryptosystems , 1999, CHES.