The Solar Ultra-Violet Imaging Telescope (SUIT) Onboard Intelligence for Flare Observations

[1]  D. Banerjee,et al.  Onboard Automated CME Detection Algorithm for the Visible Emission Line Coronagraph on ADITYA-L1 , 2018, Solar Physics.

[2]  M. Temmer,et al.  An Event-Based Verification Scheme for the Real-Time Flare Detection System at Kanzelhöhe Observatory , 2018, Solar Physics.

[3]  C. Rao,et al.  Automated Solar Flare Detection and Feature Extraction in High-Resolution and Full-Disk Hα$\upalpha$ Images , 2018 .

[4]  S. Seetha,et al.  Aditya-L1 Mission , 2017 .

[5]  V. K. Agrawal,et al.  X-Ray Spectrometers On-Board Aditya-L1 for Solar Flare Studies , 2017 .

[6]  S. Gburek,et al.  Flare Characteristics from X-ray Light Curves , 2017 .

[7]  B. Schmieder,et al.  Height formation of bright points observed by IRIS in Mg II line wings during flux emergence , 2016 .

[8]  Anamparambu N. Ramaprakash,et al.  The Solar Ultraviolet Imaging Telescope onboard Aditya-L1 , 2016, Astronomical Telescopes + Instrumentation.

[9]  C. Verbeeck,et al.  Solar Demon – an approach to detecting flares, dimmings, and EUV waves on SDO/AIA images , 2015 .

[10]  Rami Qahwaji,et al.  Solar Flare Prediction Using Advanced Feature Extraction, Machine Learning, and Feature Selection , 2011, Solar Physics.

[11]  S. Poedts,et al.  SoFAST: Automated Flare Detection with the PROBA2/SWAP EUV Imager , 2013 .

[12]  R. Seguin,et al.  The Interface Region Imaging Spectrograph (IRIS) , 2012, 1401.2491.

[13]  F. Berrilli,et al.  Algorithm for real time flare detection . , 2012 .

[14]  C. J. Wolfson,et al.  The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) , 2011 .

[15]  J. C. del Toro Iniesta,et al.  BRIGHT POINTS IN THE QUIET SUN AS OBSERVED IN THE VISIBLE AND NEAR-UV BY THE BALLOON-BORNE OBSERVATORY Sunrise , 2010, 1009.1693.

[16]  L. Fletcher,et al.  Using Active Contours for Semi-Automated Tracking of UV and EUV Solar Flare Ribbons , 2010 .

[17]  Paolo C. Grigis,et al.  The SDO Flare Detective , 2009 .

[18]  Ezio Caroli,et al.  Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications , 2009, Sensors.

[19]  Yannick Boursier,et al.  The ARTEMIS Catalog of LASCO Coronal Mass Ejections , 2009 .

[20]  J. Bookbinder,et al.  The Hinode X-Ray Telescope (XRT): Camera Design, Performance and Operations , 2008 .

[21]  H. Wechsler,et al.  Automatic Detection and Tracking of Coronal Mass Ejections in Coronagraph Time Series , 2008 .

[22]  E. Robbrecht,et al.  Automated recognition of coronal mass ejections (CMEs) in near-real-time data , 2008 .

[23]  T. Tarbell,et al.  Analysis of Solar Flare Ribbon Evolution: A Semiautomated Approach , 2006 .

[24]  Jean-Pierre Wuelser,et al.  EUVI: the STEREO-SECCHI extreme ultraviolet imager , 2004, SPIE Optics + Photonics.

[25]  Silvano Fineschi,et al.  Telescopes and Instrumentation for Solar Astrophysics , 2004 .

[26]  Otto H. Bauer,et al.  Automatic Solar Flare Detection Using Neural Network Techniques , 2002 .

[27]  J. Brown,et al.  Nonsolar astronomy with the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) , 2003, SPIE Astronomical Telescopes + Instrumentation.

[28]  Alyson G. Wilson The solar cycle and terrestrial climate , 2000 .

[29]  Arnold Hanslmeier,et al.  Automatic Image Segmentation and Feature Detection in Solar Full-Disk Images , 2000 .

[30]  Jay A. Bookbinder,et al.  The transition region and coronal explorer , 1998 .

[31]  W. Neupert,et al.  EIT: Extreme-ultraviolet Imaging Telescope for the SOHO mission , 1995 .

[32]  Herschel B. Snodgrass,et al.  Rotation of Doppler Features in the Solar Photosphere , 1990 .

[33]  W. Youden,et al.  Index for rating diagnostic tests , 1950, Cancer.

[34]  R. C. Carrington Description of a Singular Appearance seen in the Sun on September 1, 1859 , 1859 .