Using a Software Tool for Public Decision Analysis: The Case of Nacka Municipality

This paper presents a case of interval decision analysis using a tool that takes advantage of interval probabilities, values, and criteria weights and is capable of handling comparative relations, i.e., interval statements on differences between variables. These statements are represented as constraints to the solution set and evaluated using a number of different evaluation methods, each serving the decision maker with different insights of the decision problem. We demonstrate the applicability of the tool in a case study of three public infrastructure decision problems that had remained unresolved for a number of years.

[1]  Love Ekenberg,et al.  Computing upper and lower bounds in interval decision trees , 2007, Eur. J. Oper. Res..

[2]  Henry E. Kyburg,et al.  Probability and the logic of rational belief , 1970 .

[3]  Love Ekenberg,et al.  Decision Analysis with Multiple Objectives in a Framework for Evaluating Imprecision , 2005, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[4]  Mats Danielson,et al.  Generalized evaluation in decision analysis , 2005, Eur. J. Oper. Res..

[5]  Terje Aven,et al.  On the use of risk and decision analysis to support decision-making , 2003, Reliab. Eng. Syst. Saf..

[6]  Åke Grönlund,et al.  PUBLIC DECISION SUPPORT - USING A DSS TO INCREASE DEMOCRATIC TRANSPARENCY , 2005 .

[7]  Ahti Salo,et al.  Rank inclusion in criteria hierarchies , 2005, Eur. J. Oper. Res..

[8]  Kurt Weichselberger,et al.  A Methodology for Uncertainty in Knowledge-Based Systems , 1990, Lecture Notes in Computer Science.

[9]  George J. Klir Uncertainty and Information Measures for Imprecise Probabilities: An Overview , 1999, ISIPTA.

[10]  Mats Danielson,et al.  Handling Imperfect User Statements In Real-Life Decision Analysis , 2004, Int. J. Inf. Technol. Decis. Mak..

[11]  P. J. Huber,et al.  Minimax Tests and the Neyman-Pearson Lemma for Capacities , 1973 .

[12]  Konstantinos V. Katsikopoulos,et al.  New tools for decision analysts , 2006, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[13]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[14]  Raimo P. Hämäläinen,et al.  Preference ratios in multiattribute evaluation (PRIME)-elicitation and decision procedures under incomplete information , 2001, IEEE Trans. Syst. Man Cybern. Part A.

[15]  Love Ekenberg,et al.  Multi-criteria decision-making of policy strategies with public-private re-insurance systems , 2004 .

[16]  Simon French,et al.  Comparison study of multi-attribute decision analytic software , 2005 .

[17]  Serafín Moral,et al.  A Review of Propagation Algorithms for Imprecise Probabilities , 1999, ISIPTA.

[18]  F. H. Barron,et al.  Selecting a best multiattribute alternative with partial information about attribute weights , 1992 .

[19]  G. Choquet Theory of capacities , 1954 .

[20]  Mats Danielson,et al.  Preference Ordering Algorithms with Imprecise Expectations , 2006, IMECS.

[21]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[22]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[23]  Love Ekenberg,et al.  A framework for analysing decisions under risk , 1998 .

[24]  Cedric A. B. Smith,et al.  Consistency in Statistical Inference and Decision , 1961 .

[25]  Kurt Weichselberger The theory of interval-probability as a unifying concept for uncertainty , 2000, Int. J. Approx. Reason..

[26]  Raimo P. Hämäläinen,et al.  Decision Support by Interval SMART/SWING - Incorporating Imprecision in the SMART and SWING Methods , 2005, Decis. Sci..

[27]  Peter Gärdenfors,et al.  Unreliable probabilities, risk taking and decision making , 1988 .

[28]  R. Hämäläinen,et al.  Preference programming through approximate ratio comparisons , 1995 .

[29]  Raimo P. Hämäläinen,et al.  Preference Assessment by Imprecise Ratio Statements , 1992, Oper. Res..

[30]  Bernard De Baets,et al.  Ranking of admissible alternatives in interval decision making , 2005, Int. J. Syst. Sci..

[31]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[32]  Love Ekenberg,et al.  The DecideIT Decision Tool , 2003, ISIPTA.

[33]  Love Ekenberg,et al.  Second-Order Decision Analysis , 2001, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[34]  D. Denneberg Non-additive measure and integral , 1994 .