Structured singular value controller synthesis using constant D-scales without D-K iteration

Structured singular value synthesis allows the design of controllers that are robust with respect to multiple block-structured uncertainty. This type of design process commonly relies on ’ D-K iteration’ and curve fitting. In particular, the optimal D-scales and the controller are iteratively optimized. Since the D-scales are optimized over frequency, they must be curve fitted with rational transfer functions before the controller is optimized. This curve fitting can be difficult and often leads to suboptimal designs. This paper presents a structured singular value process that allows the D-scales to be constrained to be constant and simultaneously optimizes the D-scales and the controller K. The approach relies on recent results on mixed-norm H 2/H ∞ controller synthesis and also enables the direct design of reduced-order controllers.

[1]  G. Zames Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses , 1981 .

[2]  G. Stein,et al.  Performance and robustness analysis for structured uncertainty , 1982, 1982 21st IEEE Conference on Decision and Control.

[3]  M. Safonov Stability margins of diagonally perturbed multivariable feedback systems , 1982 .

[4]  John C. Doyle Analysis of Feedback Systems with Structured Uncertainty , 1982 .

[5]  John Darzentas,et al.  Problem Complexity and Method Efficiency in Optimization , 1983 .

[6]  R. Skelton,et al.  A note on balanced controller reduction , 1984 .

[7]  D. Bernstein,et al.  The optimal projection equations for fixed-order dynamic compensation , 1984 .

[8]  R. Skelton,et al.  Controller reduction by component cost analysis , 1984 .

[9]  Joe H. Chow,et al.  Time scale modeling of sparse dynamic networks , 1985 .

[10]  L. Watson,et al.  HOMPACK: a suite of codes for globally convergent homotopy algorithms. Technical report No. 85-34 , 1985 .

[11]  B. Francis,et al.  A Course in H Control Theory , 1987 .

[12]  Layne T. Watson,et al.  Algorithm 652: HOMPACK: a suite of codes for globally convergent homotopy algorithms , 1987, TOMS.

[13]  J. Doyle,et al.  Linear control theory with an H ∞ 0E optimality criterion , 1987 .

[14]  R. Fletcher Practical Methods of Optimization , 1988 .

[15]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.

[16]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[17]  D. Bernstein,et al.  LQG control with an H/sup infinity / performance bound: a Riccati equation approach , 1989 .

[18]  Reduction of Conservatism in Worst Case Designs: Systems with Block Diagonal Uncertainty Structure , 1989, 1989 American Control Conference.

[19]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .

[20]  D. Bernstein,et al.  Generalized Riccati equations for the full- and reduced-order mixed-norm H 2 / H ∞ , 1990 .

[21]  S. Vavasis Nonlinear optimization: complexity issues , 1991 .

[22]  Emmanuel G. Collins,et al.  Design of Reduced-Order, H2 Optimal Controllers Using a Homotopy Algorithm , 1993, 1993 American Control Conference.

[23]  Ian Postlethwaite,et al.  μ-K iteration: A new algorithm for μ-synthesis , 1993, Autom..

[24]  M. Safonov,et al.  Real/Complex Km-Synthesis without Curve Fitting , 1993 .

[25]  J. P. Chretien,et al.  μ synthesis by D - K iterations with constant scaling , 1993, 1993 American Control Conference.

[26]  Andrew Packard,et al.  The complex structured singular value , 1993, Autom..

[27]  Emmanuel G. Collins,et al.  Fixed Structure Computation of the Structured Singular Value , 1993, 1993 American Control Conference.

[28]  R. Y. Chiang,et al.  /spl mu/-Synthesis Robust Control: What's wrong and how to fix it? , 1993, Proceedings. The First IEEE Regional Conference on Aerospace Control Systems,.

[29]  Emmanuel G. Collins,et al.  Homotopy algorithm for maximum entropy design , 1994 .

[30]  E. Collins,et al.  A parameterization of minimal plants , 1994, IEEE Trans. Autom. Control..

[31]  Emmanuel G. Collins,et al.  An input normal form homotopy for the L2 optimal model order reduction problem , 1994, IEEE Trans. Autom. Control..

[32]  J. Shamma Robust stability with time-varying structured uncertainty , 1994, IEEE Trans. Autom. Control..

[33]  Dennis S. Bernstein,et al.  Extensions of mixed-µ bounds to monotonic and odd monotonic nonlinearities using absolute stability theory† , 1994 .

[34]  M. Safonov,et al.  Real/complex multivariable stability margin computation via generalized Popov multiplier-LMI approach , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[35]  Dennis S. Bernstein,et al.  Generalized mixed-μ bounds for real and complex multiple-block uncertainty with internal matrix structure , 1995 .

[36]  R. Chiang,et al.  Robust control toolbox , 1996 .