Fast visual object tracking via correlation filter and binary descriptors

Visual object tracking is one of the basic units in the construction of smart cities, which focuses on establishing a dynamic appearance model to represent and recognize the target in complex scenarios. In this paper, we consider visual object tracking as multiple local patches matching problem and design an online tracker based on correlation filter and binary descriptors. We integrate binary descriptors into our tracking model, which provide reliable and robust local feature information. Further, a self-adaptive decision scheme is proposed to fuse the global correlation information and the local feature descriptors. Experimental results on benchmark videos dedicate the effectiveness and robustness of our tracker.

[1]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[2]  Robert T. Collins,et al.  Mean-shift blob tracking through scale space , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[3]  Huiyu Zhou,et al.  Object tracking using SIFT features and mean shift , 2009, Comput. Vis. Image Underst..

[4]  Haibin Ling,et al.  Robust Visual Tracking using 1 Minimization , 2009 .

[5]  Michael Felsberg,et al.  The Visual Object Tracking VOT2015 Challenge Results , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[6]  Vincent Lepetit,et al.  BRIEF: Binary Robust Independent Elementary Features , 2010, ECCV.

[7]  Horst Bischof,et al.  Semi-supervised On-Line Boosting for Robust Tracking , 2008, ECCV.

[8]  Hai Tao,et al.  Probabilistic Object Tracking With Dynamic Attributed Relational Feature Graph , 2008, IEEE Transactions on Circuits and Systems for Video Technology.

[9]  Rui Caseiro,et al.  Exploiting the Circulant Structure of Tracking-by-Detection with Kernels , 2012, ECCV.

[10]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[11]  Hongtao Lu,et al.  SURF Tracking , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[12]  Haibin Ling,et al.  Robust visual tracking using ℓ1 minimization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[13]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Horst Bischof,et al.  Eigenboosting: Combining Discriminative and Generative Information , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Michael Felsberg,et al.  The Visual Object Tracking VOT2013 Challenge Results , 2013, 2013 IEEE International Conference on Computer Vision Workshops.

[16]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[17]  Simone Calderara,et al.  Visual Tracking: An Experimental Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[19]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[20]  Ming-Hsuan Yang,et al.  Visual tracking with online Multiple Instance Learning , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[21]  Jiri Matas,et al.  P-N learning: Bootstrapping binary classifiers by structural constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[22]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[23]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[24]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[25]  ZuWhan Kim Real time object tracking based on dynamic feature grouping with background subtraction , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[26]  Roland Siegwart,et al.  BRISK: Binary Robust invariant scalable keypoints , 2011, 2011 International Conference on Computer Vision.

[27]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..