Tunable Beam Steering at Terahertz Frequencies Using Reconfigurable Metasurfaces Coupled With Liquid Crystals

Metasurfaces with a spatially varying phase profile enable the design of planar and compact devices for manipulating the radiation pattern of electromagnetic fields. Aiming to achieve tunable beam steering at terahertz frequencies, we numerically investigate metasurfaces consisting of one dimensional arrays of metal-insulator-metal (MIM) cavities infiltrated with liquid crystals (LCs). The spatial phase profile is defined by a periodic voltage pattern applied on properly selected supercells of the MIM-cavity array. By means of the electro-optic effect, the voltage controls the orientation of LC molecules and, thus, the resulting effective LC refractive index. Using this approach, the spatial phase profiles can be dynamically switched among a flat, binary, and gradient profile, where the corresponding metasurfaces function as mirrors, beam splitters or blazed gratings, respectively. Tunable beam steering is achieved by changing the diffraction angle of the first diffraction order, through the reconfiguration of the metasurface period via the proper adjustment of the applied voltage pattern.

[1]  Goran Isić,et al.  Tunable metamaterials based on split ring resonators and doped graphene , 2013 .

[2]  Chiko Otani,et al.  Terahertz beam steering and frequency tuning by using the spatial dispersion of ultrafast laser pulses. , 2008, Optics express.

[3]  Joyce K. S. Poon,et al.  Vanadium-dioxide-assisted digital optical metasurfaces for dynamic wavefront engineering , 2016 .

[4]  Roman Dabrowski,et al.  Discrete Terahertz Beam Steering with an Electrically Controlled Liquid Crystal Device , 2012 .

[5]  D. Tsai,et al.  Gate-Tunable Conducting Oxide Metasurfaces. , 2015, Nano letters.

[6]  B. Hong,et al.  Optical response of large scale single layer graphene , 2011 .

[7]  J. O’Hara,et al.  Active metasurface terahertz deflector with phase discontinuities. , 2015, Optics express.

[8]  Qiang Cheng,et al.  Coding metamaterials, digital metamaterials and programmable metamaterials , 2014, Light: Science & Applications.

[9]  M. Koch,et al.  Optically controlled terahertz beam steering and imaging. , 2012, Optics letters.

[10]  Farhan Rana,et al.  Microfluidic devices for terahertz spectroscopy of biomolecules. , 2008, Optics express.

[11]  R. Jakoby,et al.  Voltage-Tunable Artificial Gradient-Index Lens Based on a Liquid Crystal Loaded Fishnet Metamaterial , 2014, IEEE Antennas and Wireless Propagation Letters.

[13]  S. Cummer,et al.  Reconfigurable Reflectarray Using Addressable Metamaterials , 2010, IEEE Antennas and Wireless Propagation Letters.

[14]  Andrea Alù,et al.  Recent progress in gradient metasurfaces , 2016 .

[15]  Mohammed Reza M. Hashemi,et al.  Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces , 2016, Scientific Reports.

[16]  Active terahertz beam steering by photo-generated graded index gratings in thin semiconductor films. , 2014, Optics express.

[17]  David Shrekenhamer,et al.  Liquid crystal tunable metamaterial absorber. , 2012, Physical review letters.

[18]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[19]  Paul L. McEuen,et al.  Terahertz imaging and spectroscopy of large-area single-layer graphene , 2011, CLEO 2011.

[20]  Anthony Grbic,et al.  Efficient light bending with isotropic metamaterial Huygens' surfaces. , 2014, Nano letters.

[21]  Prasad P. Iyer,et al.  Electrically Reconfigurable Metasurfaces Using Heterojunction Resonators , 2016 .

[22]  Sergei A. Tretyakov,et al.  Intelligent Metasurfaces with Continuously Tunable Local Surface Impedance for Multiple Reconfigurable Functions , 2018, Physical Review Applied.

[23]  T. Kamei,et al.  Increasing the speed of microstrip-line-type polymer-dispersed liquid-crystal loaded variable phase shifter , 2005, IEEE Transactions on Microwave Theory and Techniques.

[24]  Roman Dabrowski,et al.  Polymer stabilized liquid crystal phase shifter for terahertz waves. , 2013, Optics express.

[25]  Jacob Scheuer,et al.  Dynamically controlled plasmonic nano-antenna phased array utilizing vanadium dioxide [Invited] , 2015 .

[26]  J. Perruisseau-Carrier,et al.  Tunable graphene reflective cells for THz reflectarrays and generalized law of reflection , 2012, 1212.3158.

[27]  Tadao Nagatsuma,et al.  A Review on Terahertz Communications Research , 2011 .

[28]  Yang Cao,et al.  Highly efficient beam steering with a transparent metasurface. , 2013, Optics express.

[29]  Hossein Mosallaei,et al.  METASURFACE NANOANTENNAS FOR LIGHT PROCESSING , 2013 .

[30]  D. Zografopoulos,et al.  Liquid‐Crystal High‐Frequency Microwave Technology: Materials and Characterization , 2018, Advanced Materials Technologies.

[31]  Christophe Fumeaux,et al.  Experimental demonstration of reflectarray antennas at terahertz frequencies. , 2012, Optics express.

[32]  Chengkuo Lee,et al.  Active Multifunctional Microelectromechanical System Metadevices: Applications in Polarization Control, Wavefront Deflection, and Holograms , 2017 .

[33]  Willie J Padilla,et al.  Active terahertz metamaterial devices , 2006, Nature.

[34]  Janusz Parka,et al.  Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal , 2014 .

[35]  Hideo Fujikake,et al.  Microwave variable delay line using dual-frequency switching-mode liquid crystal , 2002 .

[36]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[37]  Edward A. Watson,et al.  Optical phased array technology , 1996, Proc. IEEE.

[38]  Chih-Ming Wang,et al.  High-efficiency broadband anomalous reflection by gradient meta-surfaces. , 2012, Nano letters.

[39]  Willie J Padilla,et al.  A metamaterial solid-state terahertz phase modulator , 2009 .

[40]  M. Koch,et al.  Terahertz spectroscopy and imaging – Modern techniques and applications , 2011 .

[41]  Houtong Chen,et al.  A review of metasurfaces: physics and applications , 2016, Reports on progress in physics. Physical Society.

[42]  Semih Cakmakyapan,et al.  Reconfigurable metamaterials for terahertz wave manipulation , 2017, Reports on progress in physics. Physical Society.

[43]  Michael A. Golub,et al.  Laser Beam Splitting by Diffractive Optics , 2004 .

[44]  E. Kriezis,et al.  Beam-splitter switches based on zenithal bistable liquid-crystal gratings. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Kathirvel Nallappan,et al.  Toward real-time terahertz imaging , 2018, Advances in Optics and Photonics.

[46]  C. Sirtori,et al.  Strong light-matter coupling in subwavelength metal-dielectric microcavities at terahertz frequencies. , 2009, Physical review letters.

[47]  James H. Schaffner,et al.  Beam steering microwave reflector based on electrically tunable impedance surface , 2002 .

[48]  Antonio Ferraro,et al.  Electrically Tunable Metal–Semiconductor–Metal Terahertz Metasurface Modulators , 2019, IEEE Journal of Selected Topics in Quantum Electronics.

[49]  M. Reuter,et al.  Highly birefringent, low-loss liquid crystals for terahertz applications , 2013 .

[50]  Fei Ding,et al.  Gradient metasurfaces: a review of fundamentals and applications , 2017, Reports on progress in physics. Physical Society.

[51]  Romeo Beccherelli,et al.  Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals , 2017, Nanotechnology.

[52]  Wolfgang Menzel,et al.  Reconfigurable Folded Reflectarray Antenna Based Upon Liquid Crystal Technology , 2015, IEEE Transactions on Antennas and Propagation.

[53]  Tie Jun Cui,et al.  Terahertz Beam Steering Technologies: From Phased Arrays to Field‐Programmable Metasurfaces , 2019, Advanced Optical Materials.

[54]  K. Tsuruta,et al.  Terahertz wavefront control by tunable metasurface made of graphene ribbons , 2015 .

[55]  Maciej Klemm,et al.  Phase change material based tunable reflectarray for free-space optical inter/intra chip interconnects. , 2014, Optics express.

[56]  J. R. Brown,et al.  Squeezing millimeter waves into microns. , 2004, Physical review letters.

[57]  R. Caputo,et al.  Guided-mode resonant narrowband terahertz filtering by periodic metallic stripe and patch arrays on cyclo-olefin substrates , 2018, Scientific Reports.

[58]  P. Burghignoli,et al.  Tunable Fabry–Perot Cavity THz Antenna Based on Leaky-Wave Propagation in Nematic Liquid Crystals , 2017, IEEE Antennas and Wireless Propagation Letters.

[59]  Willie J Padilla,et al.  Properties of dynamical electromagnetic metamaterials , 2017 .

[60]  Willie J Padilla,et al.  THz Wave Modulators: A Brief Review on Different Modulation Techniques , 2013 .

[61]  R. J. Bell,et al.  Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. , 1985, Applied optics.

[62]  R. Gajić,et al.  Electrically Tunable Critically Coupled Terahertz Metamaterial Absorber Based on Nematic Liquid Crystals , 2015 .

[63]  H. Mosallaei,et al.  Tunable two dimensional optical beam steering with reconfigurable indium tin oxide plasmonic reflectarray metasurface , 2016 .