Potential changes in the crayfish motor nerve terminal during repetitive stimulation

ZusammenfassungAm Öffnermuskel der Krebsschere wurde mit extracellulären Mikroelektroden von Endigungen der motorischen Nervenfasern abgeleitet. Die Änderungen der Potentialschwankungen der Nervenendigung, der e.n.t.p., bei Reizfrequenzen zwischen 1/sec und 40/sec wurden untersucht. Es sollte geklärt werden, ob Vergrößerungen der e.n.t.p. die erhöhte Freisetzung von Überträgerstoff während der Bahnung bewirken.Bei Erhöhung der Reizfrequenz nehmen die postsynaptischen Potentiale immer zu. Diphasische e.n.t.p. dagegen werden bei Frequenzerhöhung kleiner. Ebenso nimmt das vom motorischen Nerven registrierte extracelluläre Aktionspotential ab. Bei erhöhter Frequenz verringert sich auch die Leitungsgeschwindigkeit in der motorischen Nervenfaser. Dieses Verhalten des Nerven kann durch Depolarisation (negative Nachpotentiale) bei höheren Erregungsfrequenzen gedeutet werden.Im Gegensatz zur Reaktion des Nerven nehmen monophasisch positive e.n.t.p. bei Frequenzerhöhung immer zu, die Amplitude dieser Potentiale kann sich von 1/sec–40/sec vervielfachen. Die positiven e.n.t.p. werden mit großer Wahrscheinlichkeit von der äußersten Nervenendigung abgeleitet, sie entstehen durch elektrotonische Ausbreitung der Erregung in die Endigung. Die Zunahme der positiven e.n.t.p. bei Frequenzsteigerung zeigt also eine vergrößerte Depolarisation der Nervenendigung an. Im untersuchten Frequenzbereich ist die Amplitude der positiven e.n.t.p. etwa proportional der Amplitude der an der gleichen Synapse gemessenen postsynaptischen Potentiale. Sehr wahrscheinlich ist also die erhöhte präsynaptische Potentialänderung die Ursache für die vermehrte Ausschüttung von Überträgerstoff.SummaryBy means of extracellular microelectrodes potential changes were recorded from the terminal region of motor nerve fibers in the neuromuscular junction. The influence of frequencies of stimulation between 1/sec and 40/sec on these excitatory nerve terminal potentials (e.n.t.p.s) was analyzed.Postsynaptic potentials always increased with frequency of stimulation. The amplitude of diphasic e.n.t.p.s, however, was reduced at higher stimulation rates. Similarly the extracellularly recorded action potential in the motor nerve fiber is reduced, and its velocity of conduction is slowed. This behavior of the nerve fiber may be explained by depolarisation (negative afterpotentials) at increased rates of stimulation.Contrary to the reaction of the nerve fiber monophasic positive e.n.t.p.s always increased with frequency of stimulation, the change in amplitude of these e.n.t.p.s between 1/sec and 40/sec often exceeds 100%. It must be assumed that positive e.n.t.p.s are recorded from the ultimate terminal, and are generated by electrotonic spread of excitation into the terminal. The increase of positive e.n.t.p.s with frequency thus signals an increased depolarisation of the nerve terminal.The amplitude of positive e.n.t.p.s is about proportional to the average size of postsynaptic potentials in the range of frequencies studied. It seems very probable that the presynaptic potential variations with frequency of stimulation to a great extent determine the output of transmitter substance, i.e. increased potential changes in the terminal are the basis of facilitation.

[1]  J. M. Ritchie,et al.  The hyperpolarization which follows activity in mammalian non‐medullated fibres , 1957, The Journal of physiology.

[2]  S. W. Kuffler,et al.  Mechanism of facilitation at the crayfish neuromuscular junction , 1961, The Journal of physiology.

[3]  M. Bennett,et al.  Electrophysiology of supramedullary neurons in Spheroides maculatus. II. Properties of the electrically excitable membrane. , 1959 .

[4]  A. R. Martin,et al.  The end‐plate potential in mammalian muscle , 1956, The Journal of physiology.

[5]  S. Hagiwara,et al.  A study on the mechanism of impulse transmission across the giant synapse of the squid , 1958, The Journal of physiology.

[6]  J. M. Ritchie,et al.  Mammalian nonmyelinated nerve fibers. , 1962, Physiological reviews.

[7]  O. Holmes,et al.  The effects of activity on mammalian nerve fibres of low conduction velocity , 1956, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[8]  O. Tiegs ON THE MECHANISM OF MUSCULAR ACTION , 1924 .

[9]  R. Schmidt,et al.  An electrophysiological investigation of mammalian motor nerve terminals , 1963, The Journal of physiology.

[10]  J. Dudel,et al.  Facilitatory effects of 5-hydroxy-tryptamine on the crayfish neuromuscular junction , 1965, Naunyn-Schmiedebergs Archiv für experimentelle Pathologie und Pharmakologie.

[11]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[12]  S. W. Kuffler,et al.  Excitation of the nerve-muscle system in Crustacea , 1946, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[13]  B. Katz,et al.  Statistical factors involved in neuromuscular facilitation and depression , 1954, The Journal of physiology.

[14]  P. Greengard,et al.  Metabolic studies on the hyperpolarization following activity in mammalian non‐myelinated nerve fibres , 1962, The Journal of physiology.

[15]  J. Eccles,et al.  The effect of electric polarization of the spinal cord on central afferent fibres and on their excitatory synaptic action , 1962, The Journal of physiology.

[16]  S. W. Kuffler,et al.  The quantal nature of transmission and spontaneous miniature potentials at the crayfish neuromuscular junction , 1961, The Journal of physiology.

[17]  O. Holmes Effects of pH, changes in potassium concentration and metabolic inhibitors on the after-potentials of mammalian non-medullated nerve fibres. , 1962, Archives internationales de physiologie et de biochimie.

[18]  J. Eccles,et al.  Presynaptic changes associated with post‐tetanic potentiation in the spinal cord , 1959, The Journal of physiology.

[19]  R. Elul,et al.  An amplifier with constant unity gain for microelectrode studies , 1963 .

[20]  J. M. Ritchie,et al.  The after‐effects of repetitive stimulation on mammalian non‐medullated fibres , 1956, The Journal of physiology.

[21]  G. Hoyle,et al.  Inhibition at neuromuscular junctions in Crustacea , 1958, The Journal of physiology.

[22]  Wiersma Ca,et al.  Membrane potential changes on activation in crustacean muscle fibers. , 1961 .

[23]  A. Takeuchi,et al.  Electrical Changes in Pre- and Postsynaptic Axons of the Giant Synapse of Loligo , 1962, The Journal of general physiology.

[24]  C. S. Spyropoulos CHANGES IN THE DURATION OF THE ELECTRIC RESPONSE OF SINGLE NERVE FIBERS FOLLOWING REPETITIVE STIMULATION , 1956, The Journal of general physiology.

[25]  A. Shanes ELECTRICAL PHENOMENA IN NERVE II. CRAB NERVE , 1949 .

[26]  The Journal of General Physiology , .

[27]  P. Greengard,et al.  After‐potentials in mam‐malian non‐myelinated nerve fibres , 1958 .

[28]  A. W. Liley,et al.  An investigation of spontaneous activity at the neuromuscular junction of the rat , 1956, The Journal of physiology.

[29]  J. Dudel Presynaptic inhibition of the excitatory nerve terminal in the neuromuscular junction of the crayfish , 1963, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[30]  B. L. Ginsborg THE PHYSIOLOGY OF SYNAPSES , 1964 .

[31]  A. Harreveld,et al.  A Physiological Solution for Freshwater Crustaceans , 1936 .