Choice Functions and the Scopal Semantics of Indefinites

En prenant en compte le comportement exceptionnel de la portee des SN indefinis et les complications ajoutees par les effets de distributivite des indefinis pluriels, l'A. propose une revision des approches standard de la syntaxe et de la semantique des indefinis. En suivant l'article de Reinhart Quantifier scope (1997), il explique l'unique comportement de la portee des indefinis pluriels et singuliers par une semantique de la fonction du choix, et non par quelque operation de changement de portee. Mais, a la difference de Reinhart qui s'occupe aussi de la quantification standard, il considere que la quantification par les fonctions de choix est le mecanisme uniforme pour l'interpretation des indefinis. Il propose en outre une definition formelle linguistiquement adequate et exploitable dans un systeme compositionnel

[1]  P. Bernays,et al.  Grundlagen der Mathematik , 1934 .

[2]  John Robert Ross,et al.  Constraints on variables in syntax , 1967 .

[3]  Michael Ruisdael Bennett,et al.  Some extensions of a montague fragment of English , 1974 .

[4]  Robin Hayes Cooper,et al.  MONTAGUE'S SEMANTIC THEORY AND TRANSFORMATIONAL SYNTAX. , 1975 .

[5]  Robert Rodman SCOPE PHENOMENA, “MOVEMENT TRANSFORMATIONS,” AND RELATIVE CLAUSES , 1976 .

[6]  Gregory Norman Carlson,et al.  Reference to kinds in English , 1977 .

[7]  R. May The grammar of quantification , 1978 .

[8]  Donka F. Farkas,et al.  Quantifier Scope and Syntactic Islands , 1981 .

[9]  J. Barwise,et al.  Generalized quantifiers and natural language , 1981 .

[10]  Ivan A. Sag,et al.  Referential and quantificational indefinites , 1982 .

[11]  L. M. Faltz,et al.  Boolean semantics for natural language , 1984 .

[12]  R. Scha Distributive, Collective and Cumulative Quantification , 1984 .

[13]  Johan van Benthem,et al.  Questions About Quantifiers , 1984, J. Symb. Log..

[14]  Kit Fine,et al.  Reasoning with arbitrary objects , 1988 .

[15]  J. Benthem Essays in Logical Semantics , 1986 .

[16]  Anna Szabolcsi,et al.  Bound variables in syntax (Are there any , 1987 .

[17]  Godehard Link,et al.  Generalized Quantifiers and Plurals , 1987 .

[18]  M. Moortgat Categorial Investigations: Logical and Linguistic Aspects of the Lambek Calculus , 1988 .

[19]  Mark Hepple,et al.  The grammar and processing of order and dependency : a categorial approach , 1990 .

[20]  S. Neale,et al.  Indefinite descriptions: In defense of russell , 1991 .

[21]  Howard Lasnik,et al.  Reciprocity and plurality , 1991 .

[22]  Tomek Strzalkowski,et al.  From Discourse to Logic , 1991 .

[23]  T. Reinhart Wh-in-situ - An apparent paradox , 1992 .

[24]  E. G. Ruys,et al.  The scope of indefinites , 1992 .

[25]  Jaap M. van der Does Sums and quantifiers , 1993 .

[26]  Henk J. Verkuyl,et al.  A theory of aspectuality , 1993 .

[27]  Thomas Ede Zimmermann Scopeless quantifiers and operators , 1993, J. Philos. Log..

[28]  Dorit Ben-Shalom Object Wide Scope and Semantic Trees , 1993 .

[29]  B. Schein Plurals and Events , 1994 .

[30]  Bob Carpenter Quantification And Scoping: A Deductive Account , 1994 .

[31]  Bob Carpenter,et al.  Distribution, Collection and Quantification: A Type-Logical Account of Plurality , 1994 .

[32]  D. Fox Economy and scope , 1995 .

[33]  Klaus von Heusinger,et al.  The Epsilon Operator and E-Type Pronouns , 1995 .

[34]  Yoad Winter,et al.  Syncategorematic Conjunction and Structured Meanings , 1995 .

[35]  Yoad Winter,et al.  A unified semantic treatment of singular NP coordination , 1996 .

[36]  Donka F. Farkas,et al.  Evaluation Indices and Scope , 1997 .

[37]  T. Reinhart Quantifier Scope: How labor is Divided Between QR and Choice Functions , 1997 .

[38]  Anna Szabolcsi Strategies for Scope Taking , 1997 .

[39]  A. Kratzer Scope or Pseudoscope? Are there Wide-Scope Indefinites? , 1998 .