Surface plasmon mediated chemical solution deposition of gold nanoparticles on a nanostructured silver surface at room temperature.

Sub-15 nm Au nanoparticles have been fabricated on a nanostructured Ag surface at room temperature via a liquid-phase chemical deposition upon excitation of the localized surface plasmon resonance (SPR). Measurement of the SPR-mediated photothermal local heating of the substrate surface by a molecular thermometry strategy indicated the temperature to be above 230 °C, which led to an efficient decomposition of CH(3)AuPPh(3) to form Au nanoparticles on the Ag surface. Particle sizes were tunable between 3 and 10 nm by adjusting the deposition time. A surface-limited growth model for Au nanoparticles on Ag is consistent with the deposition kinetics.

[1]  F. Huo,et al.  Halide Anions as Shape-Directing Agents for Obtaining High-Quality Anisotropic Gold Nanostructures , 2013 .

[2]  A. Fedorov,et al.  Light‐Induced Plasmon‐Assisted Phase Transformation of Carbon on Metal Nanoparticles , 2012 .

[3]  J. Hofkens,et al.  Excitation polarization sensitivity of plasmon-mediated silver nanotriangle growth on a surface. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[4]  Min Qiu,et al.  Nanosecond photothermal effects in plasmonic nanostructures. , 2012, ACS nano.

[5]  Joan M. Walker,et al.  Photothermal Plasmonic Triggering of Au Nanoparticle Surface Radical Polymerization , 2011 .

[6]  Gregg M. Gallatin,et al.  Lithography, metrology and nanomanufacturing. , 2011, Nanoscale.

[7]  Suljo Linic,et al.  Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. , 2011, Nature chemistry.

[8]  W. Richtering,et al.  Stepwise thermal and photothermal dissociation of a hierarchical superaggregate of DNA-functionalized gold nanoparticles. , 2011, Small.

[9]  C. Mirkin,et al.  Synthesis of silver nanorods by low energy excitation of spherical plasmonic seeds. , 2011, Nano letters.

[10]  J. O. Jeppesen,et al.  Molecular logic gates using surface-enhanced Raman-scattered light. , 2011, Journal of the American Chemical Society.

[11]  H. Okamoto,et al.  Bottom-up realization of a porous metal-organic nanotubular assembly. , 2011, Nature materials.

[12]  Gregory V Hartland,et al.  Optical studies of dynamics in noble metal nanostructures. , 2011, Chemical reviews.

[13]  F. Sciortino,et al.  Colloidal self-assembly: Patchy from the bottom up. , 2011, Nature materials.

[14]  Lasse Jensen,et al.  Theoretical studies of plasmonics using electronic structure methods. , 2011, Chemical reviews.

[15]  M. Ferroni,et al.  Plasmon-Assisted, Spatially Resolved Laser Generation of Transition Metal Oxides from Liquid Precursors , 2011 .

[16]  J. Scaiano,et al.  High-temperature organic reactions at room temperature using plasmon excitation: decomposition of dicumyl peroxide. , 2011, Organic letters.

[17]  M. Aono,et al.  Toward sub-20 nm hybrid nanofabrication by combining the molecular ruler method and electron beam lithography , 2010, Nanotechnology.

[18]  Hee‐Tae Jung,et al.  Fabrication of single-walled carbon nanotubes dotted with Au nanocrystals: Potential DNA delivery nanocarriers , 2010 .

[19]  J. R. Adleman,et al.  Heterogenous catalysis mediated by plasmon heating. , 2009, Nano letters.

[20]  C. Mirkin,et al.  Surprisingly long-range surface-enhanced Raman scattering (SERS) on Au-Ni multisegmented nanowires. , 2009, Angewandte Chemie.

[21]  In situ plasmon-heating-induced generation of Au/TiO2 "hot spots" on colloidal crystals. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[22]  S. Cronin,et al.  Laser directed growth of carbon-based nanostructures by plasmon resonant chemical vapor deposition. , 2008, Nano letters.

[23]  C. Mirkin,et al.  Surface plasmon-mediated energy transfer in heterogap Au-Ag nanowires. , 2008, Nano letters.

[24]  Anand Gole,et al.  Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods. , 2008, Nano letters.

[25]  Linyou Cao,et al.  Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes. , 2007, Nano letters.

[26]  Claus H. Christensen,et al.  Catalytic activity of Au nanoparticles , 2007 .

[27]  L. Greengard,et al.  Plasmon-assisted chemical vapor deposition. , 2006, Nano letters.

[28]  Wei Qian,et al.  Ultrafast cooling of photoexcited electrons in gold nanoparticle-thiolated DNA conjugates involves the dissociation of the gold-thiol bond. , 2006, Journal of the American Chemical Society.

[29]  I. Parkin,et al.  Aerosol assisted chemical vapor deposition using nanoparticle precursors: a route to nanocomposite thin films. , 2006, Journal of the American Chemical Society.

[30]  Wei Qian,et al.  Photothermal reshaping of prismatic Au nanoparticles in periodic monolayer arrays by femtosecond laser pulses , 2005 .

[31]  Chad A Mirkin,et al.  Nanostructures in biodiagnostics. , 2005, Chemical reviews.

[32]  J. Hrbek,et al.  HIGH RESOLUTION X-RAY PHOTOELECTRON SPECTROSCOPY OF STYRENE OXIDE ADSORPTION AND REACTION ON AG(111) , 2004 .

[33]  Q. Jiang,et al.  Size-Dependent Surface Energies of Nanocrystals , 2004 .

[34]  Louis E. Brus,et al.  Silver Nanodisk Growth by Surface Plasmon Enhanced Photoreduction of Adsorbed [Ag+] , 2003 .

[35]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[36]  C. Mirkin,et al.  Photoinduced Conversion of Silver Nanospheres to Nanoprisms , 2001, Science.

[37]  C. Haynes,et al.  Surface-Enhanced Raman Scattering Detected Temperature Programmed Desorption: Optical Properties, Nanostructure, and Stability of Silver Film over SiO2 Nanosphere Surfaces , 2001 .

[38]  S. Erhan,et al.  Studies of thermal polymerization of vegetable oils with a differential scanning calorimeter , 1999 .

[39]  Ping Hui,et al.  Thermal conductivities of evaporated gold films on silicon and glass , 1999 .

[40]  J. Kollár,et al.  The surface energy of metals , 1998 .

[41]  S. P. Kowalczyk,et al.  Surface reactivity of alkylgold(I) complexes : substrate-selective chemical vapor deposition of gold from RAuP(CH3)3 (R = CH2CH3, CH3) at remarkably low temperatures , 1994 .

[42]  G. Whitesides,et al.  Molecular self-assembly through hydrogen bonding : supramolecular aggregates based on the cyanuric acid.melamine lattice , 1993 .

[43]  J. Kochi,et al.  Formation and decomposition of alkyl-gold(I) complexes , 1973 .

[44]  W. E. Moddeman,et al.  Photoelectron spectroscopy of coordination compounds. II. Palladium complexes , 1972 .