A global view of aerosols from merged transport models, satellite, and ground observations : Global aerosol system

[i] Growing recognition of the importance of natural and anthropogenic aerosols in climate research led to numerous efforts to obtain information on aerosols based on model simulations, satellite remote sensing, and ground observations. This study describes an approach to combine information from independent sources that complement each other in their capabilities to achieve a global characterization of monthly mean clear-sky daytime aerosol optical depth. The following sources of information have been used: simulations from the Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model; retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on the Terra satellite; and measurements from the Aerosol Robotic Network (AERONET). Leading empirical orthogonal functions (EOFs) are used to represent the significant variation signals from model and satellite results; the EOFs are fitted to the ground observations to propagate the AERONET information at a global scale. The methodology is implemented with a 2-year time record when collocated data from all three sources are available.

[1]  Thomas M. Smith,et al.  Reconstruction of Historical Sea Surface Temperatures Using Empirical Orthogonal Functions , 1996 .

[2]  Olivier Boucher,et al.  General circulation model assessment of the sensitivity of direct climate forcing by anthropogenic sulfate aerosols to aerosol size and chemistry , 1995 .

[3]  Richard W. Reynolds,et al.  An Improved Real-Time Global Sea Surface Temperature Analysis , 1993 .

[4]  B. Holben,et al.  Validation of MODIS aerosol optical depth retrieval over land , 2002 .

[5]  S. Twomey The Influence of Pollution on the Shortwave Albedo of Clouds , 1977 .

[6]  Yoram J. Kaufman,et al.  MODIS Cloud screening for remote sensing of aerosols over oceans using spatial variability , 2002 .

[7]  Richard W. Reynolds,et al.  A Real-Time Global Sea Surface Temperature Analysis , 1988 .

[8]  Larry L. Stowe,et al.  Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product , 1997 .

[9]  M. Benno Blumenthal,et al.  Reduced space optimal analysis for historical data sets: 136 years of Atlantic sea surface temperatures , 1997 .

[10]  R. Murtugudde,et al.  Application of a reduced order Kalman filter to initialize a coupled atmosphere-ocean model: Impact on the prediction of E1 Nifio , 2022 .

[11]  Yoram J. Kaufman,et al.  Annual cycle of global distributions of aerosol optical depth from integration of MODIS retrievals and GOCART model simulations , 2003 .

[12]  T. L. Wolfe,et al.  An assessment of the impact of pollution on global cloud albedo , 1984 .

[13]  W. Menzel,et al.  Discriminating clear sky from clouds with MODIS , 1998 .

[14]  P. Bhartia,et al.  Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data , 1997 .

[15]  Yoram J. Kaufman,et al.  Aerosol distribution in the Northern Hemisphere during ACE‐Asia: Results from global model, satellite observations, and Sun photometer measurements , 2004 .

[16]  Didier Tanré,et al.  Validation of the first algorithm applied for deriving the aerosol properties over the ocean using the POLDER/ADEOS measurements , 1999, IEEE Trans. Geosci. Remote. Sens..

[17]  D. Tanré,et al.  Remote Sensing of Tropospheric Aerosols from Space: Past, Present, and Future. , 1999 .

[18]  Yoram J. Kaufman,et al.  Evaluation of the Moderate‐Resolution Imaging Spectroradiometer (MODIS) retrievals of dust aerosol over the ocean during PRIDE , 2003 .

[19]  C. Land,et al.  A Comparison of Model- and Satellite-Derived Aerosol Optical Depth and Reflectivity , 2002 .

[20]  Robert F. Cahalan,et al.  Sampling Errors in the Estimation of Empirical Orthogonal Functions , 1982 .

[21]  W. Collins,et al.  Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX , 2001 .

[22]  S. Schwartz The whitehouse effect—Shortwave radiative forcing of climate by anthropogenic aerosols: an overview , 1996 .

[23]  G. North,et al.  Combining Rain Gages With Satellite Measurements for Optimal Estimates of Area-Time Averaged Rain Rates , 1991 .

[24]  A. Lacis,et al.  Aerosol retrievals over the ocean by use of channels 1 and 2 AVHRR data: sensitivity analysis and preliminary results. , 1999, Applied optics.

[25]  M. Chin,et al.  Sources and distributions of dust aerosols simulated with the GOCART model , 2001 .

[26]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[27]  U. Schneider,et al.  Global precipitation estimates based on a technique for combining satellite-based estimates, rain gauge analysis, and NWP model precipitation information , 1995 .

[28]  J. Kiehl,et al.  The Relative Roles of Sulfate Aerosols and Greenhouse Gases in Climate Forcing , 1993, Science.

[29]  B. Holben,et al.  Validation of MODIS aerosol retrieval over ocean , 2002 .

[30]  T. Eck,et al.  An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET , 2001 .

[31]  Bernard Pinty,et al.  Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging , 1998, IEEE Trans. Geosci. Remote. Sens..

[32]  J. Hansen,et al.  Radiative forcing and climate response , 1997 .

[33]  Thomas F. Eck,et al.  Variability of biomass burning aerosol optical characteristics in southern Africa during the SAFARI , 2003 .

[34]  B. Albrecht Aerosols, Cloud Microphysics, and Fractional Cloudiness , 1989, Science.

[35]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[36]  Teruyuki Nakajima,et al.  Development of a Two-Channel Aerosol Retrieval Algorithm on a Global Scale Using NOAA AVHRR , 1999 .

[37]  R. Daley Atmospheric Data Analysis , 1991 .

[38]  Catherine A. Smith,et al.  An Intercomparison of Methods for Finding Coupled Patterns in Climate Data , 1992 .

[39]  R. Martin,et al.  Interannual and seasonal variability of biomass burning emissions constrained by satellite observations , 2003 .

[40]  V. Salomonson,et al.  MODIS: advanced facility instrument for studies of the Earth as a system , 1989 .

[41]  Alexander Smirnov,et al.  Diurnal variability of aerosol optical depth observed at AERONET (Aerosol Robotic Network) sites , 2002 .

[42]  D. Tanré,et al.  Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances , 1997 .

[43]  Catherine A. Smith,et al.  Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies , 1992 .

[44]  Alexander Ignatov,et al.  Development, validation, and potential enhancements to the second‐generation operational aerosol product at the National Environmental Satellite, Data, and Information Service of the National Oceanic and Atmospheric Administration , 1997 .

[45]  C. Timmreck,et al.  Monthly Averages of Aerosol Properties: A Global Comparison Among Models, Satellite Data, and AERONET Ground Data , 2003 .

[46]  E. Vermote,et al.  Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer , 1997 .

[47]  M. Chin,et al.  How well do aerosol retrievals from satellites and representation in global circulation models match ground-based AERONET aerosol statistics? , 2001 .

[48]  Thomas M. Smith,et al.  Improved Global Sea Surface Temperature Analyses Using Optimum Interpolation , 1994 .

[49]  J. Coakley,et al.  Climate Forcing by Anthropogenic Aerosols , 1992, Science.

[50]  T. Eck,et al.  Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols , 1999 .

[51]  Phillip A. Arkin,et al.  Analyses of Global Monthly Precipitation Using Gauge Observations, Satellite Estimates, and Numerical Model Predictions , 1996 .

[52]  P. Bhartia,et al.  Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation , 1998 .

[53]  Omar Torres,et al.  PARAGON: An Integrated Approach for Characterizing Aerosol Climate Impacts and Environmental Interactions , 2004 .

[54]  F. Maignan,et al.  Remote sensing of aerosols over land surfaces from POLDER‐ADEOS‐1 polarized measurements , 2001 .

[55]  M. Ting,et al.  Covariabilities of Winter U.S. Precipitation and Pacific Sea Surface Temperatures , 2000 .

[56]  Yoram J. Kaufman,et al.  Will aerosol measurements from Terra and Aqua Polar Orbiting satellites represent the daily aerosol abundance and properties? , 2000 .

[57]  Paul Ginoux,et al.  A Long-Term Record of Aerosol Optical Depth from TOMS Observations and Comparison to AERONET Measurements , 2002 .

[58]  Robert D. Cess,et al.  The Effect of Tropospheric Aerosols on the Earth's Radiation Budget: A Parameterization for Climate Models , 1983 .

[59]  Larry L. Stowe,et al.  Remote sensing of aerosols over the oceans using AVHRR data Theory, practice and applications , 1989 .

[60]  V. Ramanathan,et al.  Reduction of tropical cloudiness by soot , 2000, Science.

[61]  J. Coakley,et al.  Effect of Ship-Stack Effluents on Cloud Reflectivity , 1987, Science.

[62]  Teruyuki Nakajima,et al.  Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements , 2002 .

[63]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .