GOING-DOWN AND SEMISTAR OPERATIONS

If D ⊆ T is an extension of (commutative integral) domains and ⋆ (resp., ⋆′) is a semistar operation on D (resp., T), we define what it means for D ⊆ T to satisfy the (⋆,⋆′)-GD property. Sufficient conditions are given for (⋆,⋆′)-GD, generalizing classical sufficient conditions for GD such as flatness, openness of the contraction map of spectra and the hypotheses of the classical going-down theorem. If ⋆ is a semistar operation on a domain D, we define what it means for D to be a ⋆-GD domain, generalizing the notion of a going-down domain. In determining whether a domain D is a $\widetilde{\star}\mbox{-GD}$ domain, the domain extensions T of D for which $(\widetilde{\star},\star')\mbox{-GD}$ is tested can be the $\widetilde{\star}$-valuation overrings of D, the simple overrings of D, or all T. P ⋆ MDs are characterized as the $\widetilde{\star}$-treed (resp., $\widetilde{\star}\mbox{-GD}$) domains D which are $\widetilde{\star}$-finite conductor domains such that $D^{\widetilde{\star}}$ is integrally clos...

[1]  M. Fontana,et al.  Uppers to Zero in Polynomial Rings and Prüfer-Like Domains , 2008, 0801.1632.

[2]  G. Picozza A note on semistar Noetherian domains , 2007 .

[3]  G. Chang ∗-Noetherian domains and the ring D[X]N∗ , 2006 .

[4]  G. Chang Strong Mori domains and the ring , 2005 .

[5]  M. Fontana,et al.  Semistar Dedekind domains , 2004, math/0405124.

[6]  M. Fontana,et al.  Semistar Linkedness and Flatness, Prüfer Semistar Multiplication Domains , 2003, math/0305333.

[7]  M. Fontana,et al.  PRÜFER ⋆-MULTIPLICATION DOMAINS AND SEMISTAR OPERATIONS , 2003 .

[8]  Marco Fontana,et al.  Nagata Rings, Kronecker Function Rings, and Related Semistar Operations , 2003, math/0302163.

[9]  Mi Hee Park On overrings of Strong Mori domains , 2002 .

[10]  J. Huckaba,et al.  Localizing systems and semistar operations , 2000 .

[11]  Ryuki Matsuda,et al.  Semistar-operations on integral domains , 1994 .

[12]  David F. Anderson,et al.  Factorization in Integral Domains , 1990 .

[13]  David F. Anderson,et al.  ON TREED NAGATA RINGS , 1989 .

[14]  M. Zafrullah,et al.  t-Linked overrings and prüfer v-multiplication domains , 1989 .

[15]  J. L. Mott,et al.  Characterizations of *-Multiplication Domains , 1984, Canadian Mathematical Bulletin.

[16]  D. Dobbs On locally divided integral domains and CPI-overrings , 1981 .

[17]  M. Boisen,et al.  CPI-Extensions: Overrings of Integral Domains with Special Prime Spectrums , 1977, Canadian Journal of Mathematics.

[18]  I. Papick,et al.  Flat or open implies going down , 1977 .

[19]  D. Dobbs DIVIDED RINGS AND GOING-DOWN , 1976 .

[20]  J. Matijevic Maximal ideal transforms of Noetherian rings , 1976 .

[21]  D. Dobbs On Going Down For Simple Overrings II , 1974 .

[22]  D. Dobbs On going down for simple overrings , 1973 .

[23]  S. McAdam Two conductor theorems , 1972 .

[24]  R. Gilmer,et al.  Multiplicative ideal theory , 1968 .

[25]  F. Richman Generalized quotient rings , 1965 .

[26]  C. Chevalley La Notion D’anneau de Décomposition , 1954, Nagoya Mathematical Journal.