Non-linear transduction strategies for chemo/biosensing on small length scales

As the function of optically-based chemo/biosensors (CBsensors) evolves towards micro- and nanoscale dimensions, the sensitivity of the device is compromised because there are simply too few reporting active sites. We see this issue as the fundamental challenge confronting the design of small length scale CBsensors, providing an imperative for the development of new optical transduction strategies. To address this challenge, we are currently fabricating: (i) new materials that will amplify the primary optical signal from the CBsensing active site in micro- and nano-environments and (ii) new sensing elements and devices to achieve high gain from a non-linear optical response. We present here the synthesis and characterization of two platforms poised for sensing by non-linear transduction.

[1]  Bradley F. Chmelka,et al.  Dye‐Doped Mesostructured Silica as a Distributed Feedback Laser Fabricated by Soft Lithography , 2001 .

[2]  Dendrimers as fluorescent sensors with signal amplification , 2000 .

[3]  T. Swager,et al.  Biotinylated poly(p-phenylene ethynylene): unexpected energy transfer results in the detection of biological analytes. , 2004, Chemical communications.

[4]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[5]  Michael J. Sailor,et al.  Polymer Replicas of Photonic Porous Silicon for Sensing and Drug Delivery Applications , 2003, Science.

[6]  Terence E. Rice,et al.  Signaling Recognition Events with Fluorescent Sensors and Switches. , 1997, Chemical reviews.

[7]  Wei Lu,et al.  Synthesis and Fabrication of High‐Performance n‐Type Silicon Nanowire Transistors , 2004 .

[8]  Q. Zhang,et al.  An efficient lasing action from pyrromethene 556 dye-doped organically modified silicates , 2002 .

[9]  A. Kolmakov,et al.  Electronic control of chemistry and catalysis at the surface of an individual tin oxide nanowire. , 2005, The journal of physical chemistry. B.

[10]  H. Nygren,et al.  Covalent coupling of polysaccharides to silicon and silicon rubber surfaces. , 1984, Journal of biomedical materials research.

[11]  Y. Kawabe,et al.  Thin-film lasers based on dye-deoxyribonucleic acid-lipid complexes , 2002 .

[12]  Ophir Vermesh,et al.  Hysteresis caused by water molecules in carbon nanotube field-effect transistors , 2003 .

[13]  Xiaolei Zhu,et al.  Sol–gel glass distributed feedback waveguide laser , 2002 .

[14]  D. Nocera,et al.  Mechanism for the Sensitized Luminescence of a Lanthanide Ion Macrocycle Appended to a Cyclodextrin , 1998 .

[15]  M. Reichling,et al.  Carbon tips as sensitive detectors for nanoscale surface and sub-surface charge , 2004 .

[16]  M. Orrit Photon Statistics in Single Molecule Experiments , 2002 .

[17]  M. Sauer Single-molecule-sensitive fluorescent sensors based on photoinduced intramolecular charge transfer. , 2003, Angewandte Chemie.

[18]  K. Kamada,et al.  Laser emission from dye-doped organic-inorganic particles of microcavity structure , 1997 .

[19]  T. Bell,et al.  Supramolecular optical chemosensors for organic analytes. , 2004, Chemical Society reviews.

[20]  Gengfeng Zheng,et al.  Electrical detection of single viruses. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[21]  S C Jakeway,et al.  Miniaturized total analysis systems for biological analysis , 2000, Fresenius' journal of analytical chemistry.

[22]  Wei Lu,et al.  Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures , 2004, Nature.

[23]  D. Nocera,et al.  Lanthanide-ion modified cyclodextrin supramolecules , 1998 .

[24]  H. Ghafouri-Shiraz,et al.  Distributed feedback lasers: An overview , 1991 .

[25]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[26]  Martin Moskovits,et al.  CHEMICAL SENSING AND CATALYSIS BY ONE-DIMENSIONAL METAL-OXIDE NANOSTRUCTURES , 2004 .

[27]  R. Cowen New Year in Space Science , 1996 .

[28]  Hongjie Dai,et al.  Carbon nanotubes: synthesis, integration, and properties. , 2002, Accounts of chemical research.

[29]  Reinhard Guckenberger,et al.  High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip. , 2004, Physical review letters.

[30]  A. K. Sheridan,et al.  Tuneability of the ASE in thin organic films , 2001 .

[31]  T. Swager,et al.  The Molecular Wire Approach to Sensory Signal Amplification , 1998 .

[32]  Zhong-hong Jiang,et al.  Laser action in Rhodamine 6G doped titania-containing ormosils , 1998 .

[33]  Anatolii N Oraevsky,et al.  Whispering-gallery waves , 2002 .

[34]  C. Guay,et al.  High‐resolution measurements of dissolved organic carbon in the Arctic Ocean by in situ fiber‐optic spectrometry , 1999 .

[35]  Philip A. Gale,et al.  Anion Recognition and Sensing: The State of the Art and Future Perspectives. , 2001, Angewandte Chemie.

[36]  Charles M. Lieber,et al.  Nanowire Photonic Circuit Elements , 2004 .

[37]  Mark L. Schattenburg,et al.  Optically matched trilevel resist process for nanostructure fabrication , 1995 .

[38]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[39]  Stucky,et al.  Mirrorless lasing from mesostructured waveguides patterned by soft lithography , 2000, Science.

[40]  A. Renn,et al.  Single-Molecule Fluorescence — Each Photon Counts , 2001 .

[41]  Preston T. Snee,et al.  Whispering‐Gallery‐Mode Lasing from a Semiconductor Nanocrystal/Microsphere Resonator Composite , 2005 .

[42]  Jörg Enderlein,et al.  Fluorescence spectroscopy of single molecules under ambient conditions: methodology and technology. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[43]  K. Vahala,et al.  Ultralow-threshold Raman laser using a spherical dielectric microcavity , 2002, Nature.

[44]  Alexey I Nesvizhskii,et al.  Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. , 2002, Analytical chemistry.

[45]  J. L. Lawless,et al.  Laser and fluorescence properties of dye-doped sol-gel silica from 400 nm to 800 nm , 1993 .

[46]  A. M. Young,et al.  A supramolecular microfluidic optical chemosensor. , 2002, Journal of the American Chemical Society.

[47]  Moungi G. Bawendi,et al.  Relationship between single quantum-dot intermittency and fluorescence intensity decays from collections of dots , 2004 .

[48]  SPECTROSCOPY OF SINGLE CDSE NANOCRYSTALLITES , 1999 .

[49]  Vikram C. Sundar,et al.  Color-selective semiconductor nanocrystal laser , 2002 .

[50]  Phaedon Avouris,et al.  Field-Effect Transistors Based on Single Semiconducting Oxide Nanobelts , 2003 .

[51]  J. Lehn,et al.  Lumineszenzsonden: Quantitative photophysikalische Ergebnisse von Eu3⊕‐ und Tb3⊕‐Cryptaten makrobicyclischer Polypyridinliganden , 1987 .

[52]  H. Kogelnik,et al.  Coupled‐Wave Theory of Distributed Feedback Lasers , 1972 .

[53]  C. Murphy Optical sensing with quantum dots. , 2002, Analytical chemistry.

[54]  W. L. Bond,et al.  Stimulated Emission into Optical Whispering Modes of Spheres , 1961 .

[55]  Qian Wang,et al.  An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices. , 2004, Journal of the American Chemical Society.

[56]  Spectroscopy and imaging using the photon scanning-tunneling microscope , 1993 .

[57]  N. F. Hulst,et al.  Analysis of individual (macro)molecules and proteins using near-field optics , 2000 .

[58]  R. Schwartz,et al.  Assessment of an automated solid phase competitive fluoroimmunoassay for benzoylecgonine in untreated urine. , 1999, Journal of immunological methods.

[59]  D. P. Fromm,et al.  Methods of single-molecule fluorescence spectroscopy and microscopy , 2003 .

[60]  R. Narayanaswamy,et al.  Chapter 9 Optical chemical sensors and biosensors , 2003 .

[61]  Ananth Dodabalapur,et al.  Nanoscale chemical sensor based on organic thin-film transistors , 2004 .

[62]  Z. Fan,et al.  ZnO nanowire field-effect transistor and oxygen sensing property , 2004 .

[63]  Guillermo Orellana,et al.  Luminescent optical sensors , 2004, Analytical and bioanalytical chemistry.

[64]  G. Mohr Chromo- and fluororeactands: indicators for detection of neutral analytes by using reversible covalent-bond chemistry. , 2004, Chemistry.

[65]  T. Gunnlaugsson,et al.  Delayed lanthanide luminescence sensing of aromatic carboxylates using heptadentate triamide Tb(III) cyclen complexes: the recognition of salicylic acid in water. , 2002, Chemical communications.

[66]  Manoochehr Koochesfahani,et al.  Molecular tagging velocimetry and other novel applications of a new phosphorescent supramolecule , 1997 .

[67]  Anthony W. Czarnik,et al.  Chemical Communication in Water Using Fluorescent Chemosensors , 1994 .

[68]  Klimov,et al.  Quantization of multiparticle auger rates in semiconductor quantum dots , 2000, Science.

[69]  F. Picaud,et al.  Influence of molecular adsorption on the dielectric properties of a single wall nanotube: a model sensor. , 2004, The Journal of chemical physics.

[70]  Tao Deng,et al.  Soft‐Lithographically Embossed, Multilayered Distributed‐Feedback Nanocrystal Lasers , 2004 .

[71]  Jinjun Shi,et al.  Recent developments in nanomaterial optical sensors , 2004 .

[72]  Richard B. Fair,et al.  Integrated chemical/biochemical sample collection, pre-concentration, and analysis on a digital microfluidic lab-on-a-chip platform , 2004, SPIE Optics East.

[73]  S. Mashiko,et al.  Thin film lasing from a dye-doped silica/titania composite , 1998 .

[74]  David Avnir,et al.  Organic Chemistry within Ceramic Matrixes: Doped Sol-Gel Materials , 1995 .