Orbital Identification of Carbonate-Bearing Rocks on Mars

Geochemical models for Mars predict carbonate formation during aqueous alteration. Carbonate-bearing rocks had not previously been detected on Mars' surface, but Mars Reconnaissance Orbiter mapping reveals a regional rock layer with near-infrared spectral characteristics that are consistent with the presence of magnesium carbonate in the Nili Fossae region. The carbonate is closely associated with both phyllosilicate-bearing and olivine-rich rock units and probably formed during the Noachian or early Hesperian era from the alteration of olivine by either hydrothermal fluids or near-surface water. The presence of carbonate as well as accompanying clays suggests that waters were neutral to alkaline at the time of its formation and that acidic weathering, proposed to be characteristic of Hesperian Mars, did not destroy these carbonates and thus did not dominate all aqueous environments.

[1]  J. Moore,et al.  Atmospheric conditions on early Mars and the missing layered carbonates , 2006 .

[2]  G. Neukum,et al.  Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 1. Ancient impact melt in the Isidis Basin and implications for the transition from the Noachian to Hesperian , 2007 .

[3]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[4]  M. Gross The Evolution of Parental Care , 2005, The Quarterly Review of Biology.

[5]  D. Schneider To whom correspondence should be addressed , 2008 .

[6]  H. Wänke,et al.  Experimental simulations of the photodecomposition of carbonates and sulphates on Mars , 1996, Nature.

[7]  S. Gaffey,et al.  Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 um): Anhydrous carbonate minerals , 1987 .

[8]  T. Encrenaz,et al.  The 2.4– spectrum of Mars observed with the infrared space observatory , 2000 .

[9]  Ronald Greeley,et al.  Geologic map of the eastern equatorial region of Mars , 1987 .

[10]  Hans-Peter Schertl,et al.  Geochim. cosmochim. acta , 1989 .

[11]  Roger G. Burns,et al.  Mineralogical applications of crystal field theory , 1970 .

[12]  Victoria E. Hamilton,et al.  Global distribution, composition, and abundance of olivine on the surface of Mars from thermal infrared data , 2008 .

[13]  T. Birkhead The Evolution of Avian Breeding Systems , 1999, Heredity.

[14]  V. Hamilton,et al.  Evidence for extensive, olivine-rich bedrock on Mars , 2005 .

[15]  F. Poulet,et al.  Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates , 2007, Nature.

[16]  Carol R. Stoker,et al.  Thermal emission spectra of Mars (5.4–10.5 μm): Evidence for sulfates, carbonates, and hydrates , 1989 .

[17]  R. Clark,et al.  Discovery of Olivine in the Nili Fossae Region of Mars , 2003, Science.

[18]  D. Schrag,et al.  A Sulfur Dioxide Climate Feedback on Early Mars , 2007, Science.

[19]  David C. Catling,et al.  A chemical model for evaporites on early Mars: Possible sedimentary tracers of the early climate and implications for exploration , 1999 .

[20]  A. Knoll,et al.  The Opportunity Rover's Athena Science Investigation at Meridiani Planum, Mars , 2004, Science.

[21]  R. Clark,et al.  Hydrous carbonates on Mars?: Evidence from Mariner 6/7 infrared spectrometer and ground-based telescopic spectra , 1994 .

[22]  G. Neukum,et al.  Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 2. Aqueous alteration of the crust , 2007 .

[23]  S. McLennan,et al.  A ∼3.5 Ga record of water-limited, acidic weathering conditions on Mars , 2007 .

[24]  R. E. Arvidson,et al.  Phyllosilicates on Mars and implications for early martian climate , 2005, Nature.

[25]  Raymond E. Arvidson,et al.  Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO) , 2007 .

[26]  David C. Catling,et al.  Alteration Assemblages in Martian Meteorites: Implications for Near-Surface Processes , 2001 .

[27]  John F. Mustard,et al.  Clay minerals in delta deposits and organic preservation potential on Mars , 2008 .

[28]  K. Simkiss Calcium in reproductive physiology. , 1967 .

[29]  U. Schade,et al.  Measurements and Calculations for Estimating the Spectrometric Detection Limit for Carbonates in Martian Soil , 1996 .

[30]  S. J. Sutley,et al.  USGS Digital Spectral Library splib06a , 2007 .

[31]  J. Ashby References and Notes , 1999 .

[32]  Ciaran L. Kelly,et al.  The Circadian Clock in Arabidopsis Roots Is a Simplified Slave Version of the Clock in Shoots , 2008, Science.

[33]  Victor Borovsky,et al.  Academy of Sciences of the USSR , 1970 .

[34]  P. Medvedev,et al.  Palaeoproterozoic magnesite: lithological and isotopic evidence for playa/sabkha environments , 2001 .

[35]  N. Izenberg,et al.  Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument , 2008, Nature.

[36]  J. Gooding Chemical weathering on Mars - Thermodynamic stabilities of primary minerals /and their alteration products/ from mafic igneous rocks , 1978 .

[37]  J. Kasting,et al.  The case for a wet, warm climate on early Mars. , 1987, Icarus.

[38]  T. Encrenaz,et al.  Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data , 2006, Science.

[39]  Roberto Maass-Moreno,et al.  Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting.ByHarvey Motulskyand, Arthur Christopoulos.Oxford and New York: Oxford University Press. $65.00 (hardcover); $29.95 (paper). 351 p; ill.; index. ISBN: 0–19–517179–9 (hc); 0–19–517180–2 (pb). 2 , 2005 .

[40]  M. Mazzotti,et al.  Precipitation in the Mg-carbonate system—effects of temperature and CO2 pressure , 2008 .

[41]  James M. Dohm,et al.  Inhibition of carbonate synthesis in acidic oceans on early Mars , 2004, Nature.

[42]  M. Velbel,et al.  Rapid Growth of Magnesium-Carbonate Weathering Products in a Stony Meteorite from Antarctica , 1988, Science.

[43]  E. Königsberger,et al.  Low-temperature thermodynamic model for the system Na2CO3−MgCO3−CaCO3−H2O , 1999 .

[44]  T. McCord,et al.  An observational search for carbonates on Mars , 1989 .

[45]  Patrick Pinet,et al.  Martian surface mineralogy from Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité on board the Mars Express spacecraft (OMEGA/MEx): Global mineral maps , 2007 .

[46]  P. Christensen,et al.  Surface and crater‐exposed lithologic units of the Isidis Basin as mapped by coanalysis of THEMIS and TES derived data products , 2008 .

[47]  Robert Blair Vocci Geology , 1882, Nature.

[48]  J. Bandfield,et al.  Spectroscopic Identification of Carbonate Minerals in the Martian Dust , 2003, Science.

[49]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[50]  A. Knoll,et al.  Water Activity and the Challenge for Life on Early Mars , 2008, Science.