A high-throughput pKa screening method based on pressure-assisted capillary electrophoresis (CE) and mass spectrometry (MS) is presented. Effects of buffer type and ionic strength on sensitivity and pKa values were investigated. Influence of dimethyl sulfoxide (DMSO) concentration present in the sample on effective mobility measurement was examined. A series of ten volatile buffers, covering a pH range from 2.5 to 10.5 with the same ionic strength, was employed. The application of volatile background electrolytes resulted in significant signal increase as compared with commonly used non-volatile phosphate buffers. In general, the CE/MS system provided a ten-fold higher sensitivity than conventional UV detection. The newly developed CE/MS method offers high-throughput capacity by pooling a number of compounds into a single sample. Simultaneous measurement of more than 50 compounds was readily achieved in less than 150 min. The measured pKa values are consistent with the published data obtained from the CE/UV method and are also in good agreement with data generated by other methods. Other advantages of using CE/MS for pKa screening are illustrated with typical examples, including poorly soluble compounds and non-UV-absorbing compounds.