Heartbeat dynamics from a Microcanonical Multifractal approach

Heartbeat dynamics is a complex system. To characterize it properly, advanced nonlinear signal-processing methods are needed. In this context, recent developments on reconstructible signals and multiscale information content have led to the Microcanonical Multifractal Formalism (MMF). The MMF provides signal-analysis techniques particularly suited to heartbeat dynamics. In particular, electrocardiogram signals and electric potential in the endocardium allows detecting slow-changing transitions. Detecting regime transition could be used for early warning and treatment of cardiac arrhythmias. In this context, we present an application to the case of Atrial Fibrillation in which we detect distinctive parameters for the transition matrix.

[1]  Oriol Pont,et al.  A Novel Analysis Method to Characterize Heartbeat Dynamics through the Microcanonical Multiscale Formalism , 2011, MDA.

[2]  L. Amaral,et al.  Multifractality in human heartbeat dynamics , 1998, Nature.

[3]  Antonio Turiel,et al.  Microcanonical multifractal formalism—a geometrical approach to multifractal systems: Part I. Singularity analysis , 2008 .

[4]  Antonio Turiel,et al.  Multifractal geometry in stock market time series , 2003 .

[5]  Jeffrey M. Hausdorff,et al.  Long-range anticorrelations and non-Gaussian behavior of the heartbeat. , 1993, Physical review letters.

[6]  Richard I. Kitney,et al.  The Study of heart-rate variability , 1980 .

[7]  P Roussel,et al.  A wavelet transform for atrial fibrillation Cycle Length measurements , 2009, 2009 36th Annual Computers in Cardiology Conference (CinC).

[8]  Samuel Peter Kozaitis Improved feature detection in ECG signals through denoising , 2008 .

[9]  Massimo Martinelli,et al.  A Knowledge-based Infrastructure for the Management of Diagnostic Imaging Procedures in the Heart Failure Domain , 2010, Trans. Mass Data Anal. Images Signals.

[10]  Prashanthan Sanders,et al.  Organization of Frequency Spectra of Atrial Fibrillation: Relevance to Radiofrequency Catheter Ablation , 2006, Journal of cardiovascular electrophysiology.

[11]  R. Klabunde Cardiovascular Physiology Concepts , 2021 .

[12]  Prashanthan Sanders,et al.  Mapping and Ablation of Ventricular Fibrillation Associated With Long-QT and Brugada Syndromes , 2003, Circulation.

[13]  T. Musha,et al.  1/f Fluctuation of Heartbeat Period , 1982, IEEE Transactions on Biomedical Engineering.

[14]  Prashanthan Sanders,et al.  Frequency Mapping of the Pulmonary Veins in Paroxysmal Versus Permanent Atrial Fibrillation , 2006, Journal of cardiovascular electrophysiology.

[15]  J Clémenty,et al.  Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. , 1998, The New England journal of medicine.

[16]  Plamen Ch. Ivanov,et al.  Long-Range Dependence in Heartbeat Dynamics , 2003 .

[17]  R. Klabunde,et al.  Comprar Cardiovascular Physiology Concepts | Richard E. Klabunde | 9781451113846 | Lippincott Williams & Wilkins , 2011 .

[18]  Antonio Turiel,et al.  Reconstructing images from their most singular fractal manifold , 2002, IEEE Trans. Image Process..

[19]  Antonio Turiel,et al.  Role of multifractal sources in the analysis of stock market time series , 2005 .

[20]  J Clémenty,et al.  [Mapping and ablation of malignant ventricular arrhythmias]. , 2005, Archives des maladies du coeur et des vaisseaux.

[21]  Prashanthan Sanders,et al.  Prevalence of pulmonary vein disconnection after anatomical ablation for atrial fibrillation: consequences of wide atrial encircling of the pulmonary veins. , 2005, European heart journal.

[22]  Prashanthan Sanders,et al.  Techniques, Evaluation, and Consequences of Linear Block at the Left Atrial Roof in Paroxysmal Atrial Fibrillation: A Prospective Randomized Study , 2005, Circulation.