Transformations between 2MASS, SDSS and BVRI photometric systems: bridging the near‐infrared and optical

We present colour transformations for the conversion of the Two Micron All Sky Survey (2MASS) photometric system to the Johnson–Cousins UBVRI system and further into the Sloan Digital Sky Survey (SDSS) ugriz system. We have taken SDSS gri magnitudes of stars measured with the 2.5-m telescope from SDSS Data Release 5 (DR5), and BVRI and JHKs magnitudes from Stetson’s catalogue and Cutri et al., respectively. We matched thousands of stars in the three photometric systems by their coordinates and obtained a homogeneous sample of 825 stars by the following constraints, which are not used in previous transformations: (1) the data are dereddened, (2) giants are omitted and (3) the sample stars selected are of the highest quality. We give metallicity, population type and transformations dependent on two colours. The transformations provide absolute magnitude and distance determinations which can be used in space density evaluations at short distances where some or all of the SDSS ugriz magnitudes are saturated. The combination of these densities with those evaluated at larger distances using SDSS ugriz photometry will supply accurate Galactic model parameters, particularly the local space densities for each population.

[1]  A new absolute magnitude calibration with 2MASS for cataclysmic variables , 2007, astro-ph/0701531.

[2]  New Metallicity Calibration Down to [Fe/H] = −2.75 dex , 2003, Publications of the Astronomical Society of Australia.

[3]  L. Pentericci,et al.  Selection of Metal-poor Giant Stars Using the Sloan Digital Sky Survey Photometric System , 2002, astro-ph/0211562.

[4]  Zeljko Ivezic,et al.  Sloan Digital Sky Survey Standard Star Catalog for Stripe 82: The Dawn of Industrial 1% Optical Photometry , 2007, astro-ph/0703157.

[5]  Peter B. Stetson,et al.  Homogeneous Photometry for Star Clusters and Resolved Galaxies. II. Photometric Standard Stars , 2000 .

[6]  D. York,et al.  The u'g'r'i'z' Standard Star Network , 2002, astro-ph/0201143.

[7]  Andrew A. West,et al.  Stellar SEDs from 0.3 to 2.5 μm: Tracing the Stellar Locus and Searching for Color Outliers in the SDSS and 2MASS , 2007, 0707.4473.

[8]  T. Chonis,et al.  SETTING UBVRI PHOTOMETRIC ZERO-POINTS USING SLOAN DIGITAL SKY SURVEY ugriz MAGNITUDES , 2007, 0710.5801.

[9]  J. Bahcall,et al.  Models for the Galaxy and the Predicted Star Counts , 1979 .

[10]  R. Kurucz Model atmospheres for G, F, A, B, and O stars , 1979 .

[11]  J. Gunn,et al.  A Photometricity and Extinction Monitor at the Apache Point Observatory , 2001, astro-ph/0106511.

[12]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[13]  Sloan/Johnson‐Cousins/2MASS Color Transformations for Cool Stars , 2006, astro-ph/0611087.

[14]  M. Schultheis,et al.  Modelling the Galactic Interstellar Extinction Distribution in Three Dimensions , 2005, astro-ph/0604427.

[15]  Ulisse Munari,et al.  The Asiago Database on Photometric Systems (ADPS) - II. Band and reddening parameters , 2003 .

[16]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[17]  B. Yanny,et al.  The Sloan Digital Sky Survey monitor telescope pipeline , 2006 .

[18]  J. Bochanski,et al.  Improved Photometric Calibrations for Red Stars Observed with the SDSS Photometric Telescope , 2007, 0708.0889.

[19]  Eva K. Grebel,et al.  Empirical color transformations between SDSS photometry and Other photometric systems. , 2005 .

[20]  S. Hawley,et al.  Updated Colors for Cool Stars in the Sloan Digital Sky Survey , 2005 .

[21]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[22]  S. Bilir,et al.  New Colour Transformations for the Sloan Photometry, and Revised Metallicity Calibration and Equations for Photometric Parallax Estimation , 2004, Publications of the Astronomical Society of Australia.

[23]  M. Skrutskie,et al.  2MASS Extended Source Catalog: Overview and Algorithms , 2000, astro-ph/0004318.

[24]  D. Tucker,et al.  Improved u′g′r′i′z′ to UBVRCIC Transformation Equations for Main-Sequence Stars , 2006, astro-ph/0609736.

[25]  Edwin A. Valentijn,et al.  The Future of Photometric, Spectrophotometric and Polarimetric Standardization , 2007 .

[26]  Kazuhiro Shimasaku,et al.  The ugriz Standard-Star System , 2002 .

[27]  Arlo U. Landolt,et al.  UBVRI Photometric Standard Stars in the Magnitude Range 11 , 1992 .

[28]  H. Payne,et al.  Astronomical Data Analysis Software and Systems X , 2001 .

[29]  Wm. A. Wheaton,et al.  2MASS All Sky Catalog of point sources. , 2003 .

[30]  Andrew A. West,et al.  The χ Factor: Determining the Strength of Activity in Low‐Mass Dwarfs , 2004, astro-ph/0410422.

[31]  Xiaohui Fan Simulation of Stellar Objects in SDSS Color Space , 1999 .

[32]  D. Tucker,et al.  A Survey of Open Clusters in the u′g′r′i′z′ Filter System. I. Results for NGC 2548 (M48) , 2003, astro-ph/0312555.

[33]  Heather L. Morrison,et al.  Mapping the Galactic Halo. I. The Spaghetti Survey , 2000 .

[34]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[35]  A. Helmi,et al.  Mapping the Galactic Halo. VI. Spectroscopic Measures of Luminosity and Metallicity , 2003 .

[36]  Brinkmann,et al.  SDSS Standard Star Catalog for Stripe 82: the Dawn of Industrial 1% Optical Photometry , 2007 .

[37]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[38]  A. Cox,et al.  Allen's astrophysical quantities , 2000 .

[39]  S. Bilir,et al.  Absolute magnitudes for late-type dwarf stars for Sloan photometry , 2005, astro-ph/0503415.

[40]  Walter A. Siegmund,et al.  The Second Data Release of the Sloan Digital Sky Survey , 2004 .

[41]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[42]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .