Hypercontractive semigroups and two dimensional self-coupled Bose fields
暂无分享,去创建一个
[1] L. Rosen. The (ϕ2n)2 quantum field theory: Higher order estimates† , 1971 .
[2] J. Glimm,et al. The Yukawa2 quantum field theory without cutoffs , 1971 .
[3] R. Høegh-Krohn,et al. A general class of quantum fields without cut-offs in two space-time dimensions , 1971 .
[4] B. Simon. Hamiltonians defined as quadratic forms , 1971 .
[5] James Glimm,et al. The λ(φ4)2 quantum field theory without cutoffsquantum field theory without cutoffs , 1970 .
[6] Barry Simon,et al. Coupling constant analyticity for the anharmonic oscillator , 1970 .
[7] James Glimm,et al. The λ(ϕ 4 ) 2 Quantum Field Theory Without Cutoffs: II. The Field Operators and the Approximate Vacuum , 1970 .
[8] E. Stein. Topics in Harmonic Analysis Related to the Littlewood-Paley Theory. , 1970 .
[9] L. Rosen. A λφ2n field theory without cutoffs , 1970 .
[10] ANALYTICITY IN THE COUPLING CONSTANT. , 1970 .
[11] A. Jaffe,et al. Lorentz covariance of the λ(ϕ4)2 quantum field theory , 1970 .
[12] Alain J. Martin,et al. Pade approximants and the anharmonic oscillator , 1969 .
[13] I. Segal,et al. Nonlinear functions of weak processes. I , 1969 .
[14] Whither Axiomatic Field Theory , 1969 .
[15] J. Glimm,et al. Singular perturbations of selfadjoint operators , 1969 .
[16] Irving Segal,et al. Notes towards the construction of nonlinear relativistic quantum fields. III: Properties of the $C^*$-dynamics for a certain class of interactions , 1969 .
[17] P. Federbush. Partially Alternate Derivation of a Result of Nelson , 1969 .
[18] James Glimm,et al. A LAMBDA PHI**4 QUANTUM FIELD THEORY WITHOUT CUTOFFS. 1 , 1968 .
[19] Tai Tsun Wu,et al. Analytic Structure of Energy Levels in a Field-Theory Model , 1968 .
[20] Paul R. Chernoff,et al. Note on product formulas for operator semigroups , 1968 .
[21] D. Bessis,et al. Unitary Padé approximants in strong coupling field theory and application to the calculation of the ρ- and f0-meson regge trajectories , 1968 .
[22] J. Glimm. Boson fields with nonlinear selfinteraction in two dimensions , 1968 .
[23] M. M. Miller,et al. Fundamentals of Quantum Optics , 1968 .
[24] Wick Polynomials at a Fixed Time , 1966 .
[25] M. Guenin. On the interaction picture , 1966 .
[26] Tosio Kato. Perturbation theory for linear operators , 1966 .
[27] J. Klauder,et al. Continuous‐Representation Theory. V. Construction of a Class of Scalar Boson Field Continuous Representations , 1965 .
[28] A. Jaffe. Divergence of perturbation theory for bosons , 1965 .
[29] A. Wightman,et al. FIELDS AS OPERATOR-VALUED DISTRIBUTIONS IN RELATIVISTIC QUANTUM THEORY , 1965 .
[30] J. Klauder,et al. Continuous‐Representation Theory. IV. Structure of a Class of Function Spaces Arising from Quantum Mechanics , 1964 .
[31] Edward Nelson. Feynman Integrals and the Schrödinger Equation , 1964 .
[32] J. Klauder. Continuous‐Representation Theory. III. On Functional Quantization of Classical Systems , 1964 .
[33] G. A. Baker,et al. THE THEORY AND APPLICATION OF THE PADE APPROXIMANT METHOD , 1964 .
[34] J. Klauder. Continuous‐Representation Theory. I. Postulates of Continuous‐Representation Theory , 1963 .
[35] John R. Klauder,et al. Continuous‐Representation Theory. II. Generalized Relation between Quantum and Classical Dynamics , 1963 .
[36] Leonard Gross,et al. MEASURABLE FUNCTIONS ON HILBERT SPACE , 1962 .
[37] Theory of coupled quantized fields , 1959 .
[38] H. N. Shapiro,et al. INTEGRATION OVER HILBERT SPACE AND OUTER EXTENSIONS. , 1957, Proceedings of the National Academy of Sciences of the United States of America.
[39] E. Stein. Interpolation of linear operators , 1956 .
[40] I. Segal. Tensor algebras over Hilbert spaces. I , 1956 .
[41] J. M. Cook. The Mathematics of Second Quantization. , 1951, Proceedings of the National Academy of Sciences of the United States of America.
[42] G. C. Wick. The Evaluation of the Collision Matrix , 1950 .
[43] J. Doob,et al. The Brownian Movement and Stochastic Equations , 1942 .
[44] Karl Löwner. Über monotone Matrixfunktionen , 1934 .
[45] E. Hille. A Class of Reciprocal Functions , 1926 .
[46] Robert Jentzsch. Über Integralgleichungen mit positivem Kern. , 1912 .
[47] O. Perron. Zur Theorie der Matrices , 1907 .