Hypercontractive semigroups and two dimensional self-coupled Bose fields

[1]  L. Rosen The (ϕ2n)2 quantum field theory: Higher order estimates† , 1971 .

[2]  J. Glimm,et al.  The Yukawa2 quantum field theory without cutoffs , 1971 .

[3]  R. Høegh-Krohn,et al.  A general class of quantum fields without cut-offs in two space-time dimensions , 1971 .

[4]  B. Simon Hamiltonians defined as quadratic forms , 1971 .

[5]  James Glimm,et al.  The λ(φ4)2 quantum field theory without cutoffsquantum field theory without cutoffs , 1970 .

[6]  Barry Simon,et al.  Coupling constant analyticity for the anharmonic oscillator , 1970 .

[7]  James Glimm,et al.  The λ(ϕ 4 ) 2 Quantum Field Theory Without Cutoffs: II. The Field Operators and the Approximate Vacuum , 1970 .

[8]  E. Stein Topics in Harmonic Analysis Related to the Littlewood-Paley Theory. , 1970 .

[9]  L. Rosen A λφ2n field theory without cutoffs , 1970 .

[10]  ANALYTICITY IN THE COUPLING CONSTANT. , 1970 .

[11]  A. Jaffe,et al.  Lorentz covariance of the λ(ϕ4)2 quantum field theory , 1970 .

[12]  Alain J. Martin,et al.  Pade approximants and the anharmonic oscillator , 1969 .

[13]  I. Segal,et al.  Nonlinear functions of weak processes. I , 1969 .

[14]  Whither Axiomatic Field Theory , 1969 .

[15]  J. Glimm,et al.  Singular perturbations of selfadjoint operators , 1969 .

[16]  Irving Segal,et al.  Notes towards the construction of nonlinear relativistic quantum fields. III: Properties of the $C^*$-dynamics for a certain class of interactions , 1969 .

[17]  P. Federbush Partially Alternate Derivation of a Result of Nelson , 1969 .

[18]  James Glimm,et al.  A LAMBDA PHI**4 QUANTUM FIELD THEORY WITHOUT CUTOFFS. 1 , 1968 .

[19]  Tai Tsun Wu,et al.  Analytic Structure of Energy Levels in a Field-Theory Model , 1968 .

[20]  Paul R. Chernoff,et al.  Note on product formulas for operator semigroups , 1968 .

[21]  D. Bessis,et al.  Unitary Padé approximants in strong coupling field theory and application to the calculation of the ρ- and f0-meson regge trajectories , 1968 .

[22]  J. Glimm Boson fields with nonlinear selfinteraction in two dimensions , 1968 .

[23]  M. M. Miller,et al.  Fundamentals of Quantum Optics , 1968 .

[24]  Wick Polynomials at a Fixed Time , 1966 .

[25]  M. Guenin On the interaction picture , 1966 .

[26]  Tosio Kato Perturbation theory for linear operators , 1966 .

[27]  J. Klauder,et al.  Continuous‐Representation Theory. V. Construction of a Class of Scalar Boson Field Continuous Representations , 1965 .

[28]  A. Jaffe Divergence of perturbation theory for bosons , 1965 .

[29]  A. Wightman,et al.  FIELDS AS OPERATOR-VALUED DISTRIBUTIONS IN RELATIVISTIC QUANTUM THEORY , 1965 .

[30]  J. Klauder,et al.  Continuous‐Representation Theory. IV. Structure of a Class of Function Spaces Arising from Quantum Mechanics , 1964 .

[31]  Edward Nelson Feynman Integrals and the Schrödinger Equation , 1964 .

[32]  J. Klauder Continuous‐Representation Theory. III. On Functional Quantization of Classical Systems , 1964 .

[33]  G. A. Baker,et al.  THE THEORY AND APPLICATION OF THE PADE APPROXIMANT METHOD , 1964 .

[34]  J. Klauder Continuous‐Representation Theory. I. Postulates of Continuous‐Representation Theory , 1963 .

[35]  John R. Klauder,et al.  Continuous‐Representation Theory. II. Generalized Relation between Quantum and Classical Dynamics , 1963 .

[36]  Leonard Gross,et al.  MEASURABLE FUNCTIONS ON HILBERT SPACE , 1962 .

[37]  Theory of coupled quantized fields , 1959 .

[38]  H. N. Shapiro,et al.  INTEGRATION OVER HILBERT SPACE AND OUTER EXTENSIONS. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[39]  E. Stein Interpolation of linear operators , 1956 .

[40]  I. Segal Tensor algebras over Hilbert spaces. I , 1956 .

[41]  J. M. Cook The Mathematics of Second Quantization. , 1951, Proceedings of the National Academy of Sciences of the United States of America.

[42]  G. C. Wick The Evaluation of the Collision Matrix , 1950 .

[43]  J. Doob,et al.  The Brownian Movement and Stochastic Equations , 1942 .

[44]  Karl Löwner Über monotone Matrixfunktionen , 1934 .

[45]  E. Hille A Class of Reciprocal Functions , 1926 .

[46]  Robert Jentzsch Über Integralgleichungen mit positivem Kern. , 1912 .

[47]  O. Perron Zur Theorie der Matrices , 1907 .