Chaos in Quantum Weightless Neuron Node Dynamics

In order to investigate the dynamics of a quantum weightless neuron node we feed its output back as input. Due to the fact that controlled operators used in the neuron circuit usually generate entanglement, we propose a mathematical method to extract the output at time t and build from that output the input at time t + 1 . As a result the time evolution is a real-valued nonlinear map with one real parameter. The dynamics orbits are plotted showing acute sensitivity to initial conditions clearly exhibiting nonlinearity by just looking at amplitude graphs. The fractal geometry and regions of convergence are discussed by their Julia Set images and a new measure for model comparison is put forward.

[1]  Michael V Berry,et al.  True Quantum Chaos? An Instructive Example , 1992 .

[2]  Bich Ha Nguyen Quantum dynamics of quantum bits , 2011 .

[3]  Daniel R. Terno Nonlinear operations in quantum-information theory , 1999 .

[4]  Paul Benioff QUANTUM ROBOTS AND ENVIRONMENTS , 1998 .

[5]  Klaus Molmer,et al.  Quantum learning by measurement and feedback , 2008, 0803.1418.

[6]  Maria Schuld,et al.  The quest for a Quantum Neural Network , 2014, Quantum Information Processing.

[7]  P. Benioff,et al.  Some foundational aspects of quantum computers and quantum robots. , 1998 .

[8]  G. Alber,et al.  Complex chaos in the conditional dynamics of qubits , 2006 .

[9]  Dima L. Shepelyansky,et al.  Quantum chaos: localization vs. ergodicity , 1988 .

[10]  Dan Ventura,et al.  Training a Quantum Neural Network , 2003, NIPS.

[11]  Seth Lloyd,et al.  Quantum feedback with weak measurements , 1999, quant-ph/9905064.

[12]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[13]  Xin Li,et al.  A hybrid quantum-inspired neural networks with sequence inputs , 2013, Neurocomputing.

[14]  Massimo Panella,et al.  Neural networks with quantum architecture and quantum learning , 2011, Int. J. Circuit Theory Appl..

[15]  Masoud Mohseni,et al.  Quantum support vector machine for big feature and big data classification , 2013, Physical review letters.

[16]  G. Alber,et al.  Random unitary dynamics of quantum networks , 2009, 0904.0107.

[17]  S. Strogatz Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering , 1995 .

[18]  Tim Gollisch,et al.  Modeling Single-Neuron Dynamics and Computations: A Balance of Detail and Abstraction , 2006, Science.

[19]  Teresa Bernarda Ludermir,et al.  Classical and superposed learning for quantum weightless neural networks , 2012, Neurocomputing.

[20]  H. Stöckmann,et al.  Quantum Chaos: An Introduction , 1999 .

[21]  F. Pasemann DYNAMICS OF A SINGLE MODEL NEURON , 1993 .

[22]  S. Haykin,et al.  Making sense of a complex world [chaotic events modeling] , 1998, IEEE Signal Process. Mag..

[23]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[24]  M. Nemes,et al.  QUANTUM DYNAMICAL MANIFESTATION OF CHAOTIC BEHAVIOR IN THE PROCESS OF ENTANGLEMENT , 1998 .

[25]  S. Lloyd,et al.  Coherent quantum feedback , 2000 .

[26]  Blümel,et al.  Exponential sensitivity and chaos in quantum systems. , 1994, Physical review letters.

[27]  University of Michigan,et al.  Cyclic Networks of Quantum Gates , 2002 .

[28]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[29]  Teresa Bernarda Ludermir,et al.  Quantum Logical Neural Networks , 2008, 2008 10th Brazilian Symposium on Neural Networks.

[30]  Teresa Bernarda Ludermir,et al.  On the Universality of Quantum Logical Neural Networks , 2012, 2012 Brazilian Symposium on Neural Networks.

[31]  Wilson Rosa de Oliveira,et al.  Quantum RAM Based Neural Netoworks , 2009, ESANN.

[32]  A Gábris,et al.  Measurement-induced chaos with entangled states. , 2011, Physical review letters.

[33]  N. Gisin,et al.  Non-linear quantum state transformation of spin-1=2 , 1997 .

[34]  Igor Aleksander,et al.  Self-adaptive universal logic circuits , 1966 .

[35]  Luis A. Aguirre,et al.  Modeling Nonlinear Dynamics and Chaos: A Review , 2009 .

[36]  Schack Comment on "Exponential sensitivity and chaos in quantum systems" , 1995, Physical review letters.

[37]  Shepelyansky,et al.  Dynamical stability of quantum "chaotic" motion in a hydrogen atom. , 1986, Physical review letters.

[38]  M. Altaisky Quantum neural network , 2001 .

[39]  Igor Jex,et al.  Properties of complex chaos in conditional qubit dynamics , 2008 .

[40]  Igor Aleksander,et al.  A probabilistic logic neuron network for associative learning , 1989 .

[41]  Scott Aaronson,et al.  NP-complete Problems and Physical Reality , 2005, Electron. Colloquium Comput. Complex..

[42]  Z. Rudnick Quantum Chaos? , 2007 .

[43]  Teresa Bernarda Ludermir,et al.  Superposition Based Learning Algorithm , 2010, 2010 Eleventh Brazilian Symposium on Neural Networks.

[44]  Maria Schuld,et al.  Quantum walks on graphs representing the firing patterns of a quantum neural network , 2014, Physical Review A.

[45]  Robert L. Devaney,et al.  A First Course In Chaotic Dynamical Systems: Theory And Experiment , 1993 .

[46]  Marcílio Carlos Pereira de Souto,et al.  Equivalence between RAM-based neural networks and probabilistic automata , 2005, IEEE Transactions on Neural Networks.

[47]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[48]  M. Schlosshauer Decoherence, the measurement problem, and interpretations of quantum mechanics , 2003, quant-ph/0312059.

[49]  D. Abrams,et al.  NONLINEAR QUANTUM MECHANICS IMPLIES POLYNOMIAL-TIME SOLUTION FOR NP-COMPLETE AND P PROBLEMS , 1998, quant-ph/9801041.