Read Bulk Data From Computational RFIDs

Without the need of local energy supply, computational RFID (CRFID) sensors are emerging as important platforms enabling a variety of sensing and computing applications. Nevertheless, the data throughput of CRFIDs is very low. This paper aims at efficiently reading bulk data from CRFIDs using commodity RFID readers. We carry out thorough experiment studies to investigate the root cause of the low data throughput of CRFIDs. The experiment results suggest that the fundamental problem of data transfer stems from the mismatch between the stringent timing requirement of commodity standard and the limited packet handling capability of CRFIDs. We further propose several simple yet effective techniques to allow CRFIDs to meet stringent timing requirement of commodity RFID readers and achieve efficient data transfer. We implement a prototype system based on the WISP CRFIDs and commercial off-the-self RFID readers. We carry out extensive experiments on the prototype systems, which show that the proposed scheme works well with the commodity RFID readers.

[1]  Lei Yang,et al.  Tagoram: real-time tracking of mobile RFID tags to high precision using COTS devices , 2014, MobiCom.

[2]  Fan Zhang,et al.  A 9 $\mu$ A, Addressable Gen2 Sensor Tag for Biosignal Acquisition , 2010, IEEE Journal of Solid-State Circuits.

[3]  Mani B. Srivastava,et al.  An experimental study of network performance impact of increased latency in software defined radios , 2007, WinTECH '07.

[4]  Yunhao Liu,et al.  Informative counting: fine-grained batch authentication for large-scale RFID systems , 2013, MobiHoc.

[5]  Jue Wang,et al.  Dude, where's my card?: RFID positioning that works with multipath and non-line of sight , 2013, SIGCOMM.

[6]  Lei Yang,et al.  Identification-free batch authentication for RFID tags , 2010, The 18th IEEE International Conference on Network Protocols.

[7]  Joshua R. Smith,et al.  Wi-fi backscatter , 2014, SIGCOMM 2015.

[8]  Piotr Indyk,et al.  Efficient and reliable low-power backscatter networks , 2012, CCRV.

[9]  David Wetherall,et al.  An empirical study of UHF RFID performance , 2008, MobiCom '08.

[10]  Benjamin Ransford,et al.  Moo : A Batteryless Computational RFID and Sensing Platform , 2011 .

[11]  Deepak Ganesan,et al.  BLINK: a high throughput link layer for backscatter communication , 2012, MobiSys '12.

[12]  Guoliang Xing,et al.  Negotiate power and performance in the reality of RFID systems , 2010, 2010 IEEE International Conference on Pervasive Computing and Communications (PerCom).

[13]  Tadayoshi Kohno,et al.  RFIDs and secret handshakes: defending against ghost-and-leech attacks and unauthorized reads with context-aware communications , 2008, CCS.

[14]  Pan Hu,et al.  EkhoNet: High-Speed Ultra Low-Power Backscatter for Next Generation Sensors , 2015, GETMBL.

[15]  Kevin Fu,et al.  Mementos: system support for long-running computation on RFID-scale devices , 2011, ASPLOS XVI.

[16]  Angli Liu,et al.  Turbocharging ambient backscatter communication , 2014, SIGCOMM.

[17]  David Wetherall,et al.  Dewdrop: An Energy-Aware Runtime for Computational RFID , 2011, NSDI.

[18]  Pan Hu,et al.  Laissez-Faire: Fully Asymmetric Backscatter Communication , 2015, SIGCOMM.

[19]  Philip Levis,et al.  The β-factor: measuring wireless link burstiness , 2008, SenSys '08.

[20]  Yuanqing Zheng,et al.  PLACE: Physical Layer Cardinality Estimation for Large-Scale RFID Systems , 2015, IEEE/ACM Transactions on Networking.

[21]  Deepak Ganesan,et al.  Enabling Bit-by-Bit Backscatter Communication in Severe Energy Harvesting Environments , 2014, NSDI.

[22]  David Wetherall,et al.  Recognizing daily activities with RFID-based sensors , 2009, UbiComp.

[23]  David Wetherall,et al.  A "Gen 2" RFID monitor based on the USRP , 2010, CCRV.

[24]  Alanson P. Sample,et al.  Design of an RFID-Based Battery-Free Programmable Sensing Platform , 2008, IEEE Transactions on Instrumentation and Measurement.

[25]  Wei Gong,et al.  Arbitrarily accurate approximation scheme for large-scale RFID cardinality estimation , 2014, IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.

[26]  Roy Want,et al.  An introduction to RFID technology , 2006, IEEE Pervasive Computing.

[27]  Lei Yang,et al.  Frogeye: Perception of the slightest tag motion , 2014, IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.

[28]  Dilip V. Sarwate Computation of cyclic redundancy checks via table look-up , 1988, CACM.

[29]  Dina Katabi,et al.  RF-IDraw: virtual touch screen in the air using RF signals , 2014, S3@MobiCom.

[30]  Lei Yang,et al.  See Through Walls with COTS RFID System! , 2015, MobiCom.

[31]  Dina Katabi,et al.  RF-IDraw: virtual touch screen in the air using RF signals , 2014, S3 '14.

[32]  Brian Otis,et al.  SOCWISP: A 9 μA, Addressable Gen2 Sensor Tag for Biosignal Acquisition , 2013 .

[33]  Mo Li,et al.  Come and Be Served: Parallel Decoding for COTS RFID Tags , 2015, MobiCom.

[34]  Shyamnath Gollakota,et al.  Bringing Gesture Recognition to All Devices , 2014, NSDI.

[35]  Jochen Teizer,et al.  SmartHat: A battery-free worker safety device employing passive UHF RFID technology , 2011, 2011 IEEE International Conference on RFID.

[36]  Kevin Fu,et al.  On the limits of effective hybrid micro-energy harvesting on mobile CRFID sensors , 2010, MobiSys '10.

[37]  Danilo De Donno,et al.  Challenge: towards distributed RFID sensing with software-defined radio , 2010, MobiCom.

[38]  David Wetherall,et al.  Ambient backscatter: wireless communication out of thin air , 2013, SIGCOMM.

[39]  Deepak Ganesan,et al.  Flit: a bulk transmission protocol for RFID-scale sensors , 2012, MobiSys '12.

[40]  Lei Yang,et al.  Season: Shelving interference and joint identification in large-scale RFID systems , 2011, 2011 Proceedings IEEE INFOCOM.