The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles

[1]  Mohamed O. Amin,et al.  Detachable photocatalysts of anatase TiO2 nanoparticles: Annulling surface charge for immediate photocatalyst separation , 2017 .

[2]  B. Tang,et al.  Highly-efficient photocatalytic degradation of methylene blue by PoPD-modified TiO2 nanocomposites due to photosensitization-synergetic effect of TiO2 with PoPD , 2017, Scientific Reports.

[3]  M. Ksibi,et al.  Photocatalytic degradation of paracetamol on TiO 2 nanoparticles and TiO 2 /cellulosic fiber under UV and sunlight irradiation , 2017 .

[4]  S. Basu,et al.  Hydrogen treated anatase TiO2: a new experimental approach and further insights from theory , 2016 .

[5]  W. Liu,et al.  Photocatalysis fundamentals and surface modification of TiO2 nanomaterials , 2015 .

[6]  Minghong Wu,et al.  Efficient Separation of Electron–Hole Pairs in Graphene Quantum Dots by TiO2 Heterojunctions for Dye Degradation , 2015 .

[7]  G. Zeng,et al.  An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. , 2015, Water research.

[8]  Liping Li,et al.  New insights into fluorinated TiO2 (brookite, anatase and rutile) nanoparticles as efficient photocatalytic redox catalysts , 2015 .

[9]  V. Dhanak,et al.  Adsorption and stability of malonic acid on rutile TiO2 (110), studied by near edge X-ray absorption fine structure and photoelectron spectroscopy , 2014 .

[10]  A. Bumajdad,et al.  Nanostructured mesoporous Au/TiO2 for photocatalytic degradation of a textile dye: the effect of size similarity of the deposited Au with that of TiO2 pores , 2014, Journal of Materials Science.

[11]  Jinyuan Chen,et al.  Synthesis, Characterization, and Photocatalysis of Well-Dispersible Phase-Pure Anatase TiO2 Nanoparticles , 2013 .

[12]  Z. Ding,et al.  Effect of Au supported TiO2 with dominant exposed {001} facets on the visible-light photocatalytic activity , 2012 .

[13]  Y. Sohn,et al.  Interfacial nature of Ag nanoparticles supported on TiO2 photocatalysts , 2011, Journal of Materials Science.

[14]  Can Li,et al.  Photocatalytic Degradation of Rhodamine B on Anatase, Rutile, and Brookite TiO2 , 2011 .

[15]  Yajun Wang,et al.  Surface hybridization effect of C60 molecules on TiO2 and enhancement of the photocatalytic activity , 2010 .

[16]  A. Khataee,et al.  Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes , 2010 .

[17]  Peifang Wang,et al.  Preparation, characterization, photocatalytic properties of titania hollow sphere doped with cerium. , 2010, Journal of hazardous materials.

[18]  Jingjing Xu,et al.  Low-temperature preparation of Boron-doped titania by hydrothermal method and its photocatalytic activity , 2009 .

[19]  M. Pons,et al.  Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: influence of dye molecular structure. , 2009, Journal of hazardous materials.

[20]  T. Sivakumar,et al.  Titania and Noble Metals Deposited Titania Catalysts in the Photodegradation of Tartazine , 2009 .

[21]  H. Fu,et al.  Efficient TiO2 Photocatalysts from Surface Hybridization of TiO2 Particles with Graphite‐like Carbon , 2008 .

[22]  T. White,et al.  Simple route to monodispersed silica-titania core-shell photocatalysts. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[23]  Jillian F Banfield,et al.  Influence of surface potential on aggregation and transport of titania nanoparticles. , 2006, Environmental science & technology.

[24]  Valery Shklover,et al.  Nanocrystalline titanium oxide electrodes for photovoltaic applications , 2005 .

[25]  V. Sharma,et al.  Adsorption of arsenate and arsenite on titanium dioxide suspensions. , 2004, Journal of colloid and interface science.

[26]  Kengo Shimanoe,et al.  Microstructure control of thermally stable TiO2 obtained by hydrothermal process for gas sensors , 2004 .

[27]  J. Bocquet,et al.  Photocatalytic and electronic properties of TiO2 powders elaborated by sol-gel route and supercritical drying , 2004 .

[28]  A. Reller,et al.  Photoinduced reactivity of titanium dioxide , 2004 .

[29]  H. Kisch,et al.  Daylight photocatalysis by carbon-modified titanium dioxide. , 2003, Angewandte Chemie.

[30]  M. Kosmulski A literature survey of the differences between the reported isoelectric points and their discussion , 2003 .

[31]  J. Blanco,et al.  Application of the colloidal stability of TiO2 particles for recovery and reuse in solar photocatalysis. , 2003, Water research.

[32]  J. W. Goodwin,et al.  Surface charge properties of colloidal titanium dioxide in ethylene glycol and water , 2002 .

[33]  Hyun Woo Lee,et al.  Preparation of Transparent Particulate MoO 3 /TiO 2 and WO 3 /TiO 2 Films and Their Photocatalytic Properties , 2001 .

[34]  J. Herrmann,et al.  Photocatalytic degradation pathway of methylene blue in water , 2001 .

[35]  C. Sanchez,et al.  Quantum size effect in TiO2 nanoparticles: does it exist? , 2000 .

[36]  F. Cui,et al.  Controlled crystal growth of calcium phosphate on titanium surface by NaOH-treatment , 1999 .

[37]  Y. Slokar,et al.  Methods of decoloration of textile wastewaters , 1998 .

[38]  P. Kamat,et al.  Nanostructured semiconductor films for photocatalysis. Photoelectrochemical behavior of SnO2/TiO2 composite systems and its role in photocatalytic degradation of a textile azo dye , 1996 .

[39]  P. Kamat,et al.  Photophysical and photochemical aspects of coupled semiconductors: charge-transfer processes in colloidal cadmium sulfide-titania and cadmium sulfide-silver(I) iodide systems , 1990 .