The properties of long-term potentiation at SC-CA1/ TA-CA1 hippocampal synaptic pathways depends upon their input pathway activation patterns.

[1]  Z. Gu,et al.  Recurring Cholinergic Inputs Induce Local Hippocampal Plasticity through Feedforward Disinhibition , 2022, eNeuro.

[2]  D. Kullmann,et al.  Long‐term potentiation in neurogliaform interneurons modulates excitation–inhibition balance in the temporoammonic pathway , 2022, The Journal of physiology.

[3]  T. Klausberger,et al.  Neurogliaform cells dynamically decouple neuronal synchrony between brain areas , 2022, Science.

[4]  Xiangmin Xu,et al.  Hippocampal neural circuit connectivity alterations in an Alzheimer’s disease mouse model revealed by monosynaptic rabies virus tracing , 2022, Neurobiology of Disease.

[5]  Peter J Schuette,et al.  GABAergic CA1 neurons are more stable following context changes than glutamatergic cells , 2022, Scientific Reports.

[6]  J. Lacaille,et al.  mTORC1 function in hippocampal parvalbumin interneurons: regulation of firing and long-term potentiation of intrinsic excitability but not long-term contextual fear memory and context discrimination , 2022, Molecular brain.

[7]  A. Krishnamurthy,et al.  Hippocampus and its involvement in Alzheimer’s disease: a review , 2022, 3 Biotech.

[8]  A. Martínez-Marcos,et al.  Neurodegeneration and Astrogliosis in the Human CA1 Hippocampal Subfield Are Related to hsp90ab1 and bag3 in Alzheimer’s Disease , 2021, International journal of molecular sciences.

[9]  J. Lacaille,et al.  Long-term potentiation at pyramidal cell to somatostatin interneuron synapses controls hippocampal network plasticity and memory , 2021, bioRxiv.

[10]  C. Papatheodoropoulos,et al.  Frequency‐dependent layer‐specific differences in short‐term synaptic plasticity in the dorsal and ventral CA1 hippocampal field , 2021, Synapse.

[11]  E. White,et al.  In Vivo Plasticity at Hippocampal Schaffer Collateral-CA1 Synapses: Replicability of the LTP Response and Pharmacology in the Long-Evans Rat , 2020, Neural plasticity.

[12]  J. Harvey,et al.  Activation of oestrogen receptor α induces a novel form of LTP at hippocampal temporoammonic‐CA1 synapses , 2020, British journal of pharmacology.

[13]  N. Bérubé,et al.  Inactivation of ATRX in forebrain excitatory neurons affects hippocampal synaptic plasticity , 2019, Hippocampus.

[14]  Linyuan Wang,et al.  Emotion Regulation of Hippocampus Using Real-Time fMRI Neurofeedback in Healthy Human , 2019, Front. Hum. Neurosci..

[15]  K. Lamsa,et al.  Long-term plasticity of hippocampal interneurons during in vivo memory processes , 2019, Current Opinion in Neurobiology.

[16]  T. Kondo,et al.  Adult Neurogenesis Conserves Hippocampal Memory Capacity , 2018, The Journal of Neuroscience.

[17]  P. Castillo,et al.  Long-Term Plasticity of Neurotransmitter Release: Emerging Mechanisms and Contributions to Brain Function and Disease. , 2018, Annual review of neuroscience.

[18]  J. Harvey,et al.  Leptin Regulation of Synaptic Function at Hippocampal TA-CA1 and SC-CA1 Synapses: Implications for Health and Disease , 2017, Neurochemical Research.

[19]  Xiaoqiang Qi,et al.  Sex Differences in Long-Term Potentiation at Temporoammonic-CA1 Synapses: Potential Implications for Memory Consolidation , 2016, PloS one.

[20]  B. Derrick,et al.  Long-term Potentiation at Temporoammonic Path-CA1 Synapses in Freely Moving Rats , 2016, Front. Neural Circuits.

[21]  N. Naghdi,et al.  Chronic sodium salicylate administration enhances population spike long-term potentiation following a combination of theta frequency primed-burst stimulation and the transient application of pentylenetetrazol in rat CA1 hippocampal neurons. , 2015, European journal of pharmacology.

[22]  C. Papatheodoropoulos Striking differences in synaptic facilitation along the dorsoventral axis of the hippocampus , 2015, Neuroscience.

[23]  J. Lacaille,et al.  Metaplastic Regulation of CA1 Schaffer Collateral Pathway Plasticity by Hebbian MGluR1a-Mediated Plasticity at Excitatory Synapses onto Somatostatin-Expressing Interneurons1,2,3 , 2015, eNeuro.

[24]  Laurenz Wiskott,et al.  Memory Storage Fidelity in the Hippocampal Circuit: The Role of Subregions and Input Statistics , 2015, PLoS Comput. Biol..

[25]  A. Irving,et al.  Leptin Induces a Novel Form of NMDA Receptor-Dependent LTP at Hippocampal Temporoammonic-CA1 Synapses1,2,3 , 2015, eNeuro.

[26]  M. Baudry,et al.  Different Patterns of Electrical Activity Lead to Long-term Potentiation by Activating Different Intracellular Pathways , 2015, The Journal of Neuroscience.

[27]  M. Stewart,et al.  Early Structural and Functional Defects in Synapses and Myelinated Axons in Stratum Lacunosum Moleculare in Two Preclinical Models for Tauopathy , 2014, PloS one.

[28]  D. Manahan‐Vaughan,et al.  Learning-facilitated synaptic plasticity occurs in the intermediate hippocampus in association with spatial learning , 2013, Front. Synaptic Neurosci..

[29]  Denise Manahan-Vaughan,et al.  The temporoammonic input to the hippocampal CA1 region displays distinctly different synaptic plasticity compared to the Schaffer collateral input in vivo: significance for synaptic information processing , 2013, Front. Synaptic Neurosci..

[30]  S. Sajikumar,et al.  Different compartments of apical CA1 dendrites have different plasticity thresholds for expressing synaptic tagging and capture. , 2011, Learning & memory.

[31]  M. Bartos,et al.  Role of microcircuit structure and input integration in hippocampal interneuron recruitment and plasticity , 2011, Neuropharmacology.

[32]  Hong-wei Dong,et al.  Are the Dorsal and Ventral Hippocampus Functionally Distinct Structures? , 2010, Neuron.

[33]  T. Wennekers,et al.  2009 Special Issue: Hippocampus, microcircuits and associative memory , 2009 .

[34]  Thomas Klausberger,et al.  GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus , 2009, The European journal of neuroscience.

[35]  L. Dobrunz,et al.  Developmental changes in short‐term facilitation are opposite at temporoammonic synapses compared to Schaffer collateral synapses onto CA1 pyramidal cells , 2009, Hippocampus.

[36]  S. Stolc,et al.  Effect of transient ischemia on long-term potentiation of synaptic transmission in rat hippocampal slices. , 2008, Neuro endocrinology letters.

[37]  D. Coulter,et al.  Dynamic Regulation of Synaptic GABA Release by the Glutamate-Glutamine Cycle in Hippocampal Area CA1 , 2006, The Journal of Neuroscience.

[38]  Juan Burrone,et al.  Activity-dependent regulation of inhibitory synaptic transmission in hippocampal neurons , 2006, Nature Neuroscience.

[39]  Dimitri M Kullmann,et al.  Hebbian LTP in feed-forward inhibitory interneurons and the temporal fidelity of input discrimination , 2005, Nature Neuroscience.

[40]  G. Lynch,et al.  Long-Term Potentiation Is Impaired in Middle-Aged Rats: Regional Specificity and Reversal by Adenosine Receptor Antagonists , 2005, The Journal of Neuroscience.

[41]  E. Schuman,et al.  Role for a cortical input to hippocampal area CA1 in the consolidation of a long-term memory , 2004, Nature.

[42]  Miguel Remondes,et al.  Molecular mechanisms contributing to long-lasting synaptic plasticity at the temporoammonic-CA1 synapse. , 2003, Learning & memory.

[43]  Y. Fathollahi,et al.  Dependence on morphine impairs the induction of long-term potentiation in the CA1 region of rat hippocampal slices , 2003, Brain Research.

[44]  G. Ahmadian,et al.  Interaction of Calcineurin and Type-A GABA Receptor γ2 Subunits Produces Long-Term Depression at CA1 Inhibitory Synapses , 2003, The Journal of Neuroscience.

[45]  E. Schuman,et al.  Direct cortical input modulates plasticity and spiking in CA1 pyramidal neurons , 2002, Nature.

[46]  E. Schuman,et al.  Patterned activity in stratum lacunosum moleculare inhibits CA1 pyramidal neuron firing. , 1999, Journal of neurophysiology.

[47]  K. Sumikawa,et al.  Acute and chronic nicotine exposure differentially facilitate the induction of LTP , 1999, Brain Research.

[48]  E. Schuman,et al.  Long-term depression of temporoammonic-CA1 hippocampal synaptic transmission. , 1999, Journal of neurophysiology.

[49]  F. Mansouri,et al.  Chronic in vivo morphine administration facilitates primed-bursts-induced long-term potentiation of Schaffer collateral–CA1 synapses in hippocampal slices in vitro , 1999, Brain Research.

[50]  R. Pertwee,et al.  Correlation between cannabinoid mediated effects on paired pulse depression and induction of long term potentiation in the rat hippocampal slice , 1998, Neuropharmacology.

[51]  L. Acsády,et al.  Different populations of vasoactive intestinal polypeptide-immunoreactive interneurons are specialized to control pyramidal cells or interneurons in the hippocampus , 1996, Neuroscience.

[52]  L. S. Leung,et al.  Factors affecting paired-pulse facilitation in hippocampal CA1 neurons in vitro , 1994, Brain Research.

[53]  W B Levy,et al.  Electrophysiological and pharmacological characterization of perforant path synapses in CA1: mediation by glutamate receptors. , 1992, Journal of neurophysiology.

[54]  G. Collingridge,et al.  GABAB autoreceptors regulate the induction of LTP , 1991, Nature.

[55]  T. Dunwiddie,et al.  Characteristics of hippocampal primed burst potentiation in vitro and in the awake rat , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[57]  W. Abraham,et al.  Induction and reversal of long‐term potentiation by repeated high‐frequency stimulation in rat hippocampal slices , 1997, Hippocampus.

[58]  H. Duvernoy Anatomy of the Hippocampus , 1988 .