A joint scoring model for peer‐to‐peer and traditional lending: a bivariate model with copula dependence

[1]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[2]  Silvia Angela Osmetti,et al.  Improving Forecast of Binary Rare Events Data: A GAM-Based Approach , 2015 .

[3]  Xiaolong Li,et al.  Evaluating borrower’s default risk in peer-to-peer lending: evidence from a lending platform in China , 2017 .

[4]  Jun Yan,et al.  Extreme Value Modeling and Risk Analysis : Methods and Applications , 2015 .

[5]  Hui Xiong,et al.  Instance-based credit risk assessment for investment decisions in P2P lending , 2016, Eur. J. Oper. Res..

[6]  Rosalba Radice,et al.  Copula regression spline models for binary outcomes , 2015, Statistics and Computing.

[7]  Pravin K. Trivedi,et al.  Using Trivariate Copulas to Model Sample Selection and Treatment Effects , 2006 .

[8]  Silvia Angela Osmetti,et al.  Modelling small and medium enterprise loan defaults as rare events: the generalized extreme value regression model , 2013 .

[9]  Claudia Czado,et al.  Model selection for discrete regular vine copulas , 2017, Comput. Stat. Data Anal..

[10]  Siva Viswanathan,et al.  Judging Borrowers by the Company They Keep: Friendship Networks and Information Asymmetry in Online Peer-to-Peer Lending , 2011, Manag. Sci..

[11]  Jonathan Crook,et al.  Credit Scoring and Its Applications, Second Edition , 2017, Mathematics in industry.

[12]  Carlos Serrano-Cinca,et al.  Determinants of Default in P2P Lending , 2015, PloS one.

[13]  Richard L. Smith Extreme Value Analysis of Environmental Time Series: An Application to Trend Detection in Ground-Level Ozone , 1989 .

[14]  David J. Hand,et al.  Measuring classifier performance: a coherent alternative to the area under the ROC curve , 2009, Machine Learning.

[15]  Gregor Dorfleitner,et al.  Description-text related soft information in peer-to-peer lending – Evidence from two leading European platforms , 2016 .

[16]  Sarah Miller Information and Default in Consumer Credit Markets: Evidence from a Natural Experiment , 2015 .

[17]  David J Hand,et al.  Evaluating diagnostic tests: The area under the ROC curve and the balance of errors , 2010, Statistics in medicine.

[18]  Aristidis K. Nikoloulopoulos,et al.  Predicting dependent binary outcomes through logistic regressions and meta-elliptical copulas , 2013 .

[19]  Paolo Giudici,et al.  Estimating bank default with generalised extreme value regression models , 2015, J. Oper. Res. Soc..

[20]  D. Tasche,et al.  Expected Shortfall: a natural coherent alternative to Value at Risk , 2001, cond-mat/0105191.

[21]  Silvia Angela Osmetti,et al.  Bankruptcy prediction of small and medium enterprises using a flexible binary generalized extreme value model , 2013, J. Oper. Res. Soc..

[22]  G. Jin,et al.  Do Social Networks Solve Information Problems for Peer-to-Peer Lending? Evidence from Prosper.Com , 2008 .

[23]  Riza Emekter,et al.  Evaluating credit risk and loan performance in online Peer-to-Peer (P2P) lending , 2015 .

[24]  Dipak K. Dey,et al.  Generalized extreme value regression for binary response data: An application to B2B electronic payments system adoption , 2011, 1101.1373.

[25]  Rosalba Radice,et al.  Estimation of a semiparametric recursive bivariate probit model in the presence of endogeneity , 2011 .

[26]  J. Stiglitz,et al.  Credit Rationing in Markets with Imperfect Information , 1981 .

[27]  Siddhartha Chib,et al.  Semiparametric Modeling and Estimation of Instrumental Variable Models , 2007 .

[28]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[29]  Amir Sufi,et al.  Household Balance Sheets, Consumption, and the Economic Slump* , 2013 .

[30]  Marco Saerens,et al.  Adjusting the Outputs of a Classifier to New a Priori Probabilities: A Simple Procedure , 2002, Neural Computation.

[31]  Wolfgang Breymann,et al.  Dependence structures for multivariate high-frequency data in finance , 2003 .

[32]  A. Agresti Categorical data analysis , 1993 .

[33]  Silvia Angela Osmetti,et al.  A comparative analysis of the UK and Italian small businesses using Generalised Extreme Value models , 2014, Eur. J. Oper. Res..

[34]  R. Winkelmann Copula bivariate probit models: with an application to medical expenditures. , 2012, Health economics.

[35]  Gary King,et al.  Logistic Regression in Rare Events Data , 2001, Political Analysis.

[36]  Rebel A. Cole,et al.  How Did the Financial Crisis Affect Small Business Lending in the U.S.? , 2013 .