GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants.

[1]  K. Shinozaki,et al.  Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. , 2005, Trends in plant science.

[2]  S. Chen,et al.  Soybean DRE-binding transcription factors that are responsive to abiotic stresses , 2005, Theoretical and Applied Genetics.

[3]  K. Shinozaki,et al.  Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. , 2004, Plant & cell physiology.

[4]  Kazuo Shinozaki,et al.  Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. , 2004, The Plant journal : for cell and molecular biology.

[5]  K. Shinozaki,et al.  A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. , 2004, Plant & cell physiology.

[6]  K. Shinozaki,et al.  Cloning and Functional Analysis of a Novel DREB 1 / CBF Transcription Factor Involved in Cold-Responsive Gene Expression in Zea mays L . , 2004 .

[7]  Lijuan Cong,et al.  Characterization of soybean genomic features by analysis of its expressed sequence tags , 2004, Theoretical and Applied Genetics.

[8]  K. Shinozaki,et al.  Regulatory network of gene expression in the drought and cold stress responses. , 2003, Current opinion in plant biology.

[9]  K. Shinozaki,et al.  Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. , 2003, The Plant journal : for cell and molecular biology.

[10]  K. Shinozaki,et al.  OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. , 2003, The Plant journal : for cell and molecular biology.

[11]  Jan-Peter Nap,et al.  The release of genetically modified crops into the environment. Part I. Overview of current status and regulations. , 2003, The Plant journal : for cell and molecular biology.

[12]  K. Shinozaki,et al.  Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. , 2002, The Plant journal : for cell and molecular biology.

[13]  K. Shinozaki,et al.  DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. , 2002, Biochemical and biophysical research communications.

[14]  K. Yamaguchi-Shinozaki,et al.  An Arabidopsis gene family encoding DRE/CRT binding proteins involved in low-temperature-responsive gene expression. , 1998, Biochemical and biophysical research communications.

[15]  K. Shinozaki,et al.  Two Transcription Factors, DREB1 and DREB2, with an EREBP/AP2 DNA Binding Domain Separate Two Cellular Signal Transduction Pathways in Drought- and Low-Temperature-Responsive Gene Expression, Respectively, in Arabidopsis , 1998, Plant Cell.

[16]  G. Pelletier,et al.  In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. , 1998, Methods in molecular biology.

[17]  K. Shinozaki,et al.  A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. , 1994, The Plant cell.