High‐efficiency microcrystalline silicon single‐junction solar cells

This short communication highlights our latest results towards high-efficiency microcrystalline silicon single-junction solar cells. By combining adequate cell design with high-quality material, a new world record efficiency was achieved for single-junction microcrystalline silicon solar cell, with a conversion efficiency of 10.69%, independently confirmed at ISE CalLab PV Cells. Such significant conversion efficiency could be achieved with only 1.8 µm of Si.

[1]  Christophe Ballif,et al.  Opto-electronic properties of rough LP-CVD ZnO:B for use as TCO in thin-film silicon solar cells , 2007 .

[2]  L. Feitknecht,et al.  Influence of Substrate on the Microstructure of Microcrystalline Silicon Layers and Cells , 2002 .

[3]  Y. Mai,et al.  Improvement of open circuit voltage in microcrystalline silicon solar cells using hot wire buffer layers , 2006 .

[4]  Hiroshi Sakai,et al.  Effects of Surface Morphology of Transparent Electrode on the Open-Circuit Voltage in a-Si:H Solar Cells , 1990 .

[5]  Kenji Yamamoto,et al.  A high efficiency thin film silicon solar cell and module , 2004 .

[6]  C. Battaglia,et al.  Geometric light trapping for high efficiency thin film silicon solar cells , 2012 .

[7]  Christophe Ballif,et al.  Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells. , 2012, Nano letters.

[8]  C. Battaglia,et al.  On the Interplay Between Microstructure and Interfaces in High-Efficiency Microcrystalline Silicon Solar Cells , 2012, IEEE Journal of Photovoltaics.

[9]  Arvind Shah,et al.  Relation between substrate surface morphology and microcrystalline silicon solar cell performance , 2008 .

[10]  P. Sichanugrist,et al.  Amorphous silicon oxide and its application to metal/n-i-p/ITO type a-Si solar cells , 1994 .

[11]  M. Kondo,et al.  Enhanced photocurrent and conversion efficiency in thin-film microcrystalline silicon solar cells using periodically textured back reflectors with hexagonal dimple arrays , 2012 .

[12]  Arvind Shah,et al.  Complete microcrystalline p-i-n solar cell—Crystalline or amorphous cell behavior? , 1994 .

[13]  M. Kondo,et al.  Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells , 2013 .

[14]  C. Droz,et al.  Relationship between Raman crystallinity and open-circuit voltage in microcrystalline silicon solar cells , 2004 .

[15]  C. Ballif,et al.  Resistive interlayer for improved performance of thin film silicon solar cells on highly textured substrate , 2010 .

[16]  C. Battaglia,et al.  Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells , 2011 .

[17]  J. Meier,et al.  Recent Developments of High Efficiency Micromorph tandem solar cells in KAI-M PECVD reactors , 2010 .

[18]  R. Schropp,et al.  Influence on cell performance of bulk defect density in microcrystalline silicon grown by VHF PECVD , 2006 .

[19]  C. Ballif,et al.  A New View of Microcrystalline Silicon: The Role of Plasma Processing in Achieving a Dense and Stable Absorber Material for Photovoltaic Applications , 2012 .

[20]  C. Ballif,et al.  Silicon Filaments in Silicon Oxide for Next‐Generation Photovoltaics , 2012, Advanced materials.

[21]  S. Guha,et al.  Amorphous and nanocrystalline silicon thin film photovoltaic technology on flexible substrates , 2012 .

[22]  P. D. Veneri,et al.  Silicon oxide based n-doped layer for improved performance of thin film silicon solar cells , 2010 .

[23]  Michio Kondo,et al.  Effects of Substrate Surface Morphology on Microcrystalline Silicon Solar Cells , 2001 .

[24]  R. Schropp,et al.  Structural defects caused by a rough substrate and their influence on the performance of hydrogenated nano-crystalline silicon n-i-p solar cells , 2009 .

[25]  C. Battaglia,et al.  Nanometer- and Micrometer-Scale Texturing for High-Efficiency Micromorph Thin-Film Silicon Solar Cells , 2012, IEEE Journal of Photovoltaics.

[26]  S. Guha,et al.  Material structure and metastability of hydrogenated nanocrystalline silicon solar cells , 2006 .

[27]  N. Wyrsch,et al.  Substrate dependent stability and interplay between optical and electrical properties in μc-Si:H single junction solar cells , 2011 .

[28]  A. Feltrin,et al.  Material considerations for terawatt level deployment of photovoltaics , 2008 .

[29]  Hiroaki Okamoto,et al.  Influence of substrate texture on microstructure and photovoltaic performances of thin film polycrystalline silicon solar cells , 2002 .

[30]  A. Shah,et al.  High-Efficiency P-I-N Microcrystalline and Micromorph Thin Film Silicon Solar Cells Deposited on LPCVD Zno Coated Glass Substrates , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[31]  C. Ballif,et al.  Control of CVD-deposited ZnO films properties through water/DEZ ratio: Decoupling of electrode morphology and electrical characteristics , 2012 .

[32]  Kenji Yamamoto,et al.  Thin-film poly-Si solar cells on glass substrate fabricated at low temperature , 1999 .

[33]  D. Staebler,et al.  Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .

[34]  S. Guha,et al.  Effect of impurities on performance of hydrogenated nanocrystalline silicon solar cells , 2012 .

[35]  Martin A. Green,et al.  Solar cell efficiency tables (version 41) , 2013 .

[36]  C. Ballif,et al.  Mixed-phase p-type silicon oxide containing silicon nanocrystals and its role in thin-film silicon solar cells , 2010 .