Influence of Pt or Au doping on improving the detection of CO by ZnO: A first-principles calculations study

[1]  Yufeng Zhang,et al.  Insightful understanding of three-phase interface behaviors in 1T-2H MoS2/CFP electrode for hydrogen evolution improvement , 2021, Chinese Chemical Letters.

[2]  Yufeng Zhang,et al.  Mechanism of Sulfur Vacancies and Doping in 1T’-MoS2 toward the Evolution of Hydrogen , 2021, Chemical Physics Letters.

[3]  Zhenyu Feng,et al.  Simple synthesis of porous ZnO nanoplates hyper-doped with low concentration of Pt for efficient acetone sensing , 2021 .

[4]  Chaonan Wang,et al.  Advances in Doped ZnO Nanostructures for Gas Sensor , 2020, Chemical record.

[5]  Ping-an Yang,et al.  Platinum modified MoS 2 monolayer for adsorption and gas sensing of SF 6 decomposition products: a DFT study , 2020, High Voltage.

[6]  K. Cen,et al.  SnO2 nanoparticles incorporated CuO nanopetals on graphene for high-performance room-temperature NO2 sensor , 2020 .

[7]  R. Bovhyra,et al.  A DFT study for adsorption of CO and H2 on Pt-doped ZnO nanocluster , 2020, SN Applied Sciences.

[8]  K. G. Nair,et al.  Unraveling Hydrogen Adsorption Kinetics of Bimetallic Au–Pt Nanoisland-Functionalized Carbon Nanofibers for Room-Temperature Gas Sensor Applications , 2020 .

[9]  S. Jagtap,et al.  Metal-oxide semiconductors for carbon monoxide (CO) gas sensing: A review , 2020 .

[10]  Yan Wang,et al.  Rapid detection of low concentration CO using Pt-loaded ZnO nanosheets. , 2020, Journal of hazardous materials.

[11]  Yan Wang,et al.  Enhanced methane sensing property of flower-like SnO2 doped by Pt nanoparticles: A combined experimental and first-principle study , 2019, Sensors and Actuators B: Chemical.

[12]  Liyi Shi,et al.  A MnN4 moiety embedded graphene as a magnetic gas sensor for CO detection: A first principle study , 2019, Applied Surface Science.

[13]  G. Lu,et al.  One step synthesis of branched SnO2/ZnO heterostructures and their enhanced gas-sensing properties , 2019, Sensors and Actuators B: Chemical.

[14]  Cuiping Li,et al.  Direct growth of Al-doped ZnO ultrathin nanosheets on electrode for ethanol gas sensor application , 2018, Applied Surface Science.

[15]  Haojie Duan,et al.  Hierarchical porous ZnO microflowers with ultra-high ethanol gas-sensing at low concentration , 2018 .

[16]  J. Rayappan,et al.  Monomer: Design of ZnO Nanostructures (Nanobush and Nanowire) and Their Room-Temperature Ethanol Vapor Sensing Signatures. , 2017, ACS applied materials & interfaces.

[17]  Young-Bae Kim,et al.  Au Decorated ZnO hierarchical architectures: Facile synthesis, tunable morphology and enhanced CO detection at room temperature , 2017 .

[18]  N. Tit,et al.  Ab-initio investigation of adsorption of CO and CO 2 molecules on graphene: Role of intrinsic defects on gas sensing , 2017 .

[19]  Nicola Donato,et al.  Pt-decorated In2O3 nanoparticles and their ability as a highly sensitive (<10 ppb) acetone sensor for biomedical applications , 2016 .

[20]  Nicola Donato,et al.  Gas sensing properties of Al-doped ZnO for UV-activated CO detection , 2016 .

[21]  M. Penza,et al.  Evaluation of gas-sensing properties of ZnO nanostructures electrochemically doped with Au nanophases , 2016, Beilstein journal of nanotechnology.

[22]  Giovanni Neri,et al.  CO sensing properties under UV radiation of Ga-doped ZnO nanopowders , 2015 .

[23]  Yeon-Tae Yu,et al.  Facile Approach to Synthesize Au@ZnO Core-Shell Nanoparticles and Their Application for Highly Sensitive and Selective Gas Sensors. , 2015, ACS applied materials & interfaces.

[24]  Alessandro Martucci,et al.  Au and Pt Nanoparticles Effects on the Optical and Electrical Gas Sensing Properties of Sol–Gel-Based ZnO Thin-Film Sensors , 2015, IEEE Sensors Journal.

[25]  R. Kumar,et al.  Zinc Oxide Nanostructures for NO2 Gas–Sensor Applications: A Review , 2014, Nano-Micro Letters.

[26]  Ke-Wei Xu,et al.  Improving SO2 gas sensing properties of graphene by introducing dopant and defect: A first-principles study , 2014 .

[27]  Giovanni Neri,et al.  Al-doped ZnO for highly sensitive CO gas sensors , 2014 .

[28]  C. Zhiming,et al.  Acetic acid gas sensors based on Ni2+ doped ZnO nanorods prepared by using the solvothermal method , 2012 .

[29]  B. Delley,et al.  Conformation and energetics of benzene adsorbate on SnO2(110) surfaces: A first principles study , 2011 .

[30]  E. Llobet,et al.  Gas sensing with Au-decorated carbon nanotubes. , 2011, ACS nano.

[31]  Soon-Ku Hong,et al.  Enhancement of CO gas sensing properties in ZnO thin films deposited on self-assembled Au nanodots , 2010 .

[32]  Z. Wen,et al.  Formaldehyde gas sensing property and mechanism of TiO2–Ag nanocomposite , 2010 .

[33]  Nicola Donato,et al.  CO gas sensing of ZnO nanostructures synthesized by an assisted microwave wet chemical route , 2009 .

[34]  S. Choopun,et al.  Ethanol sensor based on ZnO and Au-doped ZnO nanowires , 2008 .

[35]  G. Korotcenkov Metal oxides for solid-state gas sensors: What determines our choice? , 2007 .

[36]  Hao Gong,et al.  Nano-crystalline Cu-doped ZnO thin film gas sensor for CO , 2006 .

[37]  Ji Haeng Yu,et al.  ELECTRICAL AND CO GAS SENSING PROPERTIES OF ZNO-SNO2 COMPOSITES , 1998 .

[38]  G. Choi,et al.  CO gas sensing properties of ZnO–CuO composite , 1998 .

[39]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[40]  H. Hong,et al.  Thick-film zinc-oxide gas sensor for the control of lean air-to-fuel ratio in domestic combustion systems , 1995 .

[41]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[42]  T. Seiyama,et al.  A New Detector for Gaseous Components Using Semiconductive Thin Films. , 1962 .

[43]  Yuxiang Qin,et al.  Effect of vacancy defects of SnS on gas adsorption and its potential for selective gas detection , 2021 .

[44]  Yousef S. H. Najjar,et al.  Gaseous Pollutants Formation and Their Harmful Effects on Health and Environment , 2011 .