An efficient and reliable residual-type a posteriori error estimator for the Signorini problem

We derive a new a posteriori error estimator for the Signorini problem. It generalizes the standard residual-type estimators for unconstrained problems in linear elasticity by additional terms at the contact boundary addressing the non-linearity. Remarkably these additional contact-related terms vanish in the case of so-called full-contact. We prove reliability and efficiency for two- and three-dimensional simplicial meshes. Moreover, we address the case of non-discrete gap functions. Numerical tests for different obstacles and starting grids illustrate the good performance of the a posteriori error estimator in the two- and three-dimensional case, for simplicial as well as for unstructured mixed meshes.

[1]  Serge Nicaise,et al.  A posteriori error estimations of residual type for Signorini's problem , 2005, Numerische Mathematik.

[2]  Qingsong Zou,et al.  Efficient and reliable hierarchical error estimates for the discretization error of elliptic obstacle problems , 2010, Math. Comput..

[3]  William W. Hager,et al.  Error estimates for the finite element solution of variational inequalities , 1977 .

[4]  S. Repin Functional a posteriori estimates for elliptic variational inequalities , 2008 .

[5]  R. Kornhuber Adaptive monotone multigrid methods for nonlinear variational problems , 1997 .

[6]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[7]  Barbara I. Wohlmuth An a Posteriori Error Estimator for Two-Body Contact Problems on Non-Matching Meshes , 2007, J. Sci. Comput..

[8]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[9]  J. Haslinger,et al.  Solution of Variational Inequalities in Mechanics , 1988 .

[10]  Olaf Steinbach,et al.  Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements , 2007 .

[11]  Ricardo H. Nochetto,et al.  A posteriori error analysis for parabolic variational inequalities , 2007 .

[12]  Barbara I. Wohlmuth,et al.  A Posteriori Error Estimator for Obstacle Problems , 2010, SIAM J. Sci. Comput..

[13]  Ralf Kornhuber,et al.  A posteriori error estimates for elliptic variational inequalities , 1996 .

[14]  C. Baiocchi,et al.  Estimations d’Erreur dans L ∞ pour les Inequations a Obstacle , 1977 .

[15]  J. Barbera,et al.  Contact mechanics , 1999 .

[16]  Andreas Veeser,et al.  Hierarchical error estimates for the energy functional in obstacle problems , 2011, Numerische Mathematik.

[17]  H. Rentz-Reichert,et al.  UG – A flexible software toolbox for solving partial differential equations , 1997 .

[18]  K. Johnson Contact Mechanics: Frontmatter , 1985 .

[19]  Barbara I. Wohlmuth,et al.  A posteriori error estimator and error control for contact problems , 2009, Math. Comput..

[20]  Ricardo H. Nochetto,et al.  Pointwise a posteriori error control for elliptic obstacle problems , 2003, Numerische Mathematik.

[21]  J. Craggs Applied Mathematical Sciences , 1973 .

[22]  Barbara I. Wohlmuth,et al.  An Optimal A Priori Error Estimate for Nonlinear Multibody Contact Problems , 2005, SIAM J. Numer. Anal..

[23]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[24]  Andreas Veeser,et al.  Explicit Upper Bounds for Dual Norms of Residuals , 2009, SIAM J. Numer. Anal..

[25]  Andreas Veeser,et al.  Efficient and Reliable A Posteriori Error Estimators for Elliptic Obstacle Problems , 2001, SIAM J. Numer. Anal..

[26]  Ricardo H. Nochetto,et al.  Fully Localized A posteriori Error Estimators and Barrier Sets for Contact Problems , 2004, SIAM J. Numer. Anal..

[27]  Kunibert G. Siebert,et al.  A Unilaterally Constrained Quadratic Minimization with Adaptive Finite Elements , 2007, SIAM J. Optim..

[28]  Dietrich Braess,et al.  A posteriori error estimators for obstacle problems – another look , 2005, Numerische Mathematik.

[29]  Serge Nicaise,et al.  Residual a posteriori error estimators for contact problems in elasticity , 2007 .

[30]  R. Verfürth A review of a posteriori error estimation techniques for elasticity problems , 1999 .

[31]  Rüdiger Verfürth,et al.  A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .

[32]  Carsten Carstensen,et al.  Averaging techniques yield reliable a posteriori finite element error control for obstacle problems , 2004, Numerische Mathematik.

[33]  Ricardo H. Nochetto,et al.  Residual type a posteriori error estimates for elliptic obstacle problems , 2000, Numerische Mathematik.

[34]  D. Braess,et al.  A posteriori estimators for obstacle problems by the hypercircle method , 2008 .

[35]  Hertz On the Contact of Elastic Solids , 1882 .

[36]  Rolf Krause,et al.  Monotone Multigrid Methods for Signorini's Problem with Friction , 2001 .

[37]  Martin Vohralík,et al.  On the unilateral contact between membranes. Part 2: a posteriori analysis and numerical experiments , 2012 .

[38]  Ilio Galligani,et al.  Mathematical Aspects of Finite Element Methods , 1977 .

[39]  J. Rodrigues Obstacle Problems in Mathematical Physics , 1987 .

[40]  Andreas Veeser,et al.  A Posteriori Error Estimators for Regularized Total Variation of Characteristic Functions , 2003, SIAM J. Numer. Anal..

[41]  Robert Mundt Über die Berührung fester elastischer Körper: Eine allgemeinverständliche Darstellung der Theorie von Heinrich Hertz , 1950 .