Improved Output-Sensitive Snap Rounding
暂无分享,去创建一个
[1] Frank K. Hwang,et al. A Simple Algorithm for Merging Two Disjoint Linearly-Ordered Sets , 1972, SIAM J. Comput..
[2] Kurt Mehlhorn,et al. A new data structure for representing sorted lists , 1980, Acta Informatica.
[3] Leonidas J. Guibas,et al. A new representation for linear lists , 1977, STOC '77.
[4] Leonidas J. Guibas,et al. Rounding arrangements dynamically , 1995, SCG '95.
[5] John D. Hobby,et al. Practical segment intersection with finite precision output , 1999, Comput. Geom..
[6] Eli Packer. Iterated snap rounding with bounded drift , 2006, SCG '06.
[7] Mark de Berg,et al. An intersection-sensitive algorithm for snap rounding , 2007, Comput. Geom..
[8] Leonidas J. Guibas,et al. Snap rounding line segments efficiently in two and three dimensions , 1997, SCG '97.
[9] Thomas Ottmann,et al. Algorithms for Reporting and Counting Geometric Intersections , 1979, IEEE Transactions on Computers.
[10] Graham Cormode,et al. The string edit distance matching problem with moves , 2002, SODA '02.
[11] Robert E. Tarjan,et al. Making data structures persistent , 1986, STOC '86.
[12] Derick Wood,et al. A survey of adaptive sorting algorithms , 1992, CSUR.
[13] Franklin P. Antonio. Faster Line Segment Intersection , 1992, Graphics Gems III.
[14] Eli Packer,et al. Iterated snap rounding , 2002, Comput. Geom..
[15] KEVIN Q. BROWN. Comments on “algorithms for reporting and counting geometric intersections” , 1981, IEEE Transactions on Computers.
[16] Walter F. Tichy,et al. The string-to-string correction problem with block moves , 1984, TOCS.
[17] P. Giblin. Computational geometry: algorithms and applications (2nd edn.), by M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf. Pp. 367. £20.50. 2000. ISBN 3 540 65620 0 (Springer-Verlag). , 2001, The Mathematical Gazette.
[18] Clifford Stein,et al. Introduction to Algorithms, 2nd edition. , 2001 .
[19] Mark de Berg,et al. Computational geometry: algorithms and applications , 1997 .
[20] Micha Sharir,et al. Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.