Magnetic field dependence of Pauli spin blockade: A window into the sources of spin relaxation in silicon quantum dots

We investigate spin relaxation in a silicon double quantum dot via leakage current through Pauli blockade as a function of interdot detuning and magnetic field. A dip in leakage current as a function of magnetic field on an $\ensuremath{\sim}40$ mT field scale is attributed to spin-orbit mediated spin relaxation. On a larger ($\ensuremath{\sim}400$ mT) field scale, a peak in leakage current is seen in some, but not all, Pauli-blocked transitions, and is attributed to spin-flip cotunneling. Both dip and peak structure show good agreement between theory and experiment.

[1]  Lydia L. Sohn,et al.  Introduction to Mesoscopic Electron Transport , 1997 .

[2]  M. Lagally,et al.  Tunable spin loading and T1 of a silicon spin qubit measured by single-shot readout. , 2010, Physical review letters.

[3]  H. Inokawa,et al.  Pauli-spin-blockade transport through a silicon double quantum dot , 2007, 0707.3513.

[4]  W. A. Coish,et al.  Stationary and transient leakage current in the Pauli spin blockade. , 2008, Physical review letters.

[5]  M Xiao,et al.  Measurement of the spin relaxation time of single electrons in a silicon metal-oxide-semiconductor-based quantum dot. , 2010, Physical review letters.

[6]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[7]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[8]  S. Sarma,et al.  Quantum dot spin qubits in silicon: Multivalley physics , 2010, 1001.5040.

[9]  Y. Nazarov,et al.  Pauli spin blockade in the presence of strong spin-orbit coupling , 2009, 0905.1818.

[10]  K. Uchida,et al.  Control of Inter-Dot Electrostatic Coupling by a Side Gate in a Silicon Double Quantum Dot Operating at 4.5 K , 2009 .

[11]  Y. Arakawa,et al.  Quantitative estimation of exchange interaction energy using two-electron vertical double quantum dots. , 2009, Physical Review Letters.

[12]  M. Lagally,et al.  Spin blockade and lifetime-enhanced transport in a few-electron Si/SiGe double quantum dot , 2007, 0708.0794.

[13]  R. Shulman,et al.  NUCLEAR MAGNETIC RESONANCE OF Si$sup 29$ IN n-AND p-TYPE SILICON , 1956 .

[14]  A. Khaetskii,et al.  Electron spin decoherence in quantum dots due to interaction with nuclei. , 2002, Physical review letters.

[15]  S. Tarucha,et al.  Current Rectification by Pauli Exclusion in a Weakly Coupled Double Quantum Dot System , 2002, Science.

[16]  L. Sohn,et al.  Mesoscopic electron transport , 1997 .

[17]  E. Bakkers,et al.  Disentangling the effects of spin-orbit and hyperfine interactions on spin blockade , 2010, 1002.2120.

[18]  A. Gossard,et al.  Singlet-triplet spin blockade and charge sensing in a few-electron double quantum dot , 2004, cond-mat/0410679.

[19]  A. Khaetskii,et al.  Spin-flip transitions between Zeeman sublevels in semiconductor quantum dots , 2000, cond-mat/0003513.

[20]  S. Tarucha,et al.  Electrically driven single-electron spin resonance in a slanting Zeeman field , 2008, 0805.1083.

[21]  C. Buizert,et al.  Driven coherent oscillations of a single electron spin in a quantum dot , 2006, Nature.

[22]  W. A. Coish,et al.  Pauli Spin Blockade in a Highly Tunable Silicon Double Quantum Dot , 2010, Scientific reports.

[23]  W. V. D. Wiel,et al.  Electron transport through double quantum dots , 2002, cond-mat/0205350.

[24]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[25]  Robert Joynt,et al.  Rashba spin-orbit coupling and spin relaxation in silicon quantum wells , 2005 .

[26]  L. Vandersypen,et al.  Control and Detection of Singlet-Triplet Mixing in a Random Nuclear Field , 2005, Science.

[27]  Daniel Loss,et al.  Direct measurement of the spin-orbit interaction in a two-electron InAs nanowire quantum dot. , 2007, Physical review letters.

[28]  H. Huebl,et al.  Electrostatically defined few-electron double quantum dot in silicon , 2009, 0904.0311.

[29]  G. Burkard,et al.  Spin-valley blockade in carbon nanotube double quantum dots , 2010, 1005.2738.

[30]  Charles M. Lieber,et al.  A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor. , 2007, Nature nanotechnology.

[31]  W. A. Coish,et al.  Leakage-current line shapes from inelastic cotunneling in the Pauli spin blockade regime , 2011, 1109.4445.

[32]  S. K. Watson,et al.  Relaxation and dephasing in a two-electron 13C nanotube double quantum dot. , 2008, Physical review letters.