Motor response suppression and the prepotent tendency to respond: a parametric fMRI study

[1]  T. Hanakawa,et al.  Transient Neural Activity in the Medial Superior Frontal Gyrus and Precuneus Time Locked with Attention Shift between Object Features , 1999, NeuroImage.

[2]  E. Stein,et al.  Right hemispheric dominance of inhibitory control: an event-related functional MRI study. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Y. Miyashita,et al.  Common inhibitory mechanism in human inferior prefrontal cortex revealed by event-related functional MRI. , 1999, Brain : a journal of neurology.

[4]  H Shibasaki,et al.  Cognitive motor control in human pre-supplementary motor area studied by subdural recording of discrimination/selection-related potentials. , 1999, Brain : a journal of neurology.

[5]  J. Desmond,et al.  Load-Dependent Roles of Frontal Brain Regions in the Maintenance of Working Memory , 1999, NeuroImage.

[6]  K. Chang,et al.  Subregions within the Supplementary Motor Area Activated at Different Stages of Movement Preparation and Execution , 1999, NeuroImage.

[7]  M. Raichle,et al.  The neural correlates of consciousness: an analysis of cognitive skill learning. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[8]  Patrick Dupont,et al.  Human brain activity related to speed discrimination tasks , 1998, Experimental Brain Research.

[9]  J. Jonides,et al.  Inhibition in verbal working memory revealed by brain activation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[10]  J. Grafman,et al.  Sustained attention deficits in patients with lesions of posterior cortex , 1998, Neuropsychologia.

[11]  G A Orban,et al.  Human brain regions involved in direction discrimination. , 1998, Journal of neurophysiology.

[12]  R. Passingham,et al.  Temporary interference in human lateral premotor cortex suggests dominance for the selection of movements. A study using transcranial magnetic stimulation. , 1998, Brain : a journal of neurology.

[13]  M. Botvinick,et al.  Anterior cingulate cortex, error detection, and the online monitoring of performance. , 1998, Science.

[14]  Jonathan D. Cohen,et al.  A Developmental Functional MRI Study of Prefrontal Activation during Performance of a Go-No-Go Task , 1997, Journal of Cognitive Neuroscience.

[15]  Karl J. Friston,et al.  Incorporating Prior Knowledge into Image Registration , 1997, NeuroImage.

[16]  S Clare,et al.  Functional magnetic resonance imaging of single motor events reveals human presupplementary motor area , 1997, Annals of neurology.

[17]  I. Robertson,et al.  `Oops!': Performance correlates of everyday attentional failures in traumatic brain injured and normal subjects , 1997, Neuropsychologia.

[18]  A. Papanicolaou,et al.  Magnetoencephalographic evidence for common sources of long latency fields to rare target and rare novel visual stimuli. , 1997, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[19]  J. C. Ballard Computerized assessment of sustained attention: a review of factors affecting vigilance performance. , 1996, Journal of clinical and experimental neuropsychology.

[20]  J. Grafman,et al.  Sustained attention deficits in pat ients with right frontal lesions , 1996, Neuropsychologia.

[21]  Sean Marrett,et al.  Imaging Motor-to-Sensory Discharges in the Human Brain: An Experimental Tool for the Assessment of Functional Connectivity , 1996, NeuroImage.

[22]  Karl J. Friston,et al.  The Trouble with Cognitive Subtraction , 1996, NeuroImage.

[23]  Edward E. Smith,et al.  A Parametric Study of Prefrontal Cortex Involvement in Human Working Memory , 1996, NeuroImage.

[24]  P. Malloy,et al.  The orbitomedial frontal syndrome. , 1996, Archives of clinical neuropsychology : the official journal of the National Academy of Neuropsychologists.

[25]  Paul B. Johnson,et al.  Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm regions. , 1996, Cerebral cortex.

[26]  J. Price,et al.  Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys , 1995, The Journal of comparative neurology.

[27]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited—Again , 1995, NeuroImage.

[28]  J. Kalaska,et al.  Deciding not to GO: neuronal correlates of response selection in a GO/NOGO task in primate premotor and parietal cortex. , 1995, Cerebral cortex.

[29]  R. Turner,et al.  Characterizing Evoked Hemodynamics with fMRI , 1995, NeuroImage.

[30]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited , 1995, NeuroImage.

[31]  C. Gross,et al.  How inferior temporal cortex became a visual area. , 1994, Cerebral cortex.

[32]  P E Roland,et al.  Cortical fields participating in form and colour discrimination in the human brain. , 1991, Neuroreport.

[33]  M. Corbetta,et al.  Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  D. Tank,et al.  Brain magnetic resonance imaging with contrast dependent on blood oxygenation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[35]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[36]  H. Freund,et al.  Premotor cortex and conditional motor learning in man. , 1990, Brain : a journal of neurology.

[37]  K. Heilman,et al.  Response preparation and response inhibition after lesions of the medial frontal lobe. , 1987, Archives of neurology.

[38]  M M Mesulam,et al.  Reversible go–no go deficits in a case of frontal lobe tumor , 1985, Annals of neurology.

[39]  E. Drewe An experimental investigation of Luria's theory on the effects of frontal lobe lesions in man , 1975, Neuropsychologia.

[40]  M. Mishkin,et al.  Limbic lesions and the problem of stimulus--reinforcement associations. , 1972, Experimental neurology.

[41]  R. Passingham Visual discrimination learning after selective prefrontal ablations in monkeys (Macaca mulatta). , 1972, Neuropsychologia.

[42]  D. Lester A Note on Gellerman Series , 1966 .

[43]  F. Plum Handbook of Physiology. , 1960 .

[44]  E Zarahn,et al.  Event-related functional MRI: implications for cognitive psychology. , 1999, Psychological bulletin.

[45]  J. Ashburner,et al.  Nonlinear spatial normalization using basis functions , 1999, Human brain mapping.

[46]  R. Ivry Cerebellar timing systems. , 1997, International review of neurobiology.

[47]  Paul B. Johnson,et al.  Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. , 1997, Annual review of neuroscience.

[48]  R. Andersen,et al.  Multimodal representation of space in the posterior parietal cortex and its use in planning movements. , 1997, Annual review of neuroscience.

[49]  Richard lvry,et al.  Cerebellar timing systems. , 1997 .

[50]  Alan C. Evans,et al.  An MRI-Based Probabilistic Atlas of Neuroanatomy , 1994 .

[51]  Ellen Perecman,et al.  The frontal lobes revisited. , 1987 .

[52]  P. Malloy,et al.  Tests of Luria's frontal lobe syndromes , 1985 .

[53]  A. Luria Higher Cortical Functions in Man , 1980, Springer US.

[54]  Saul Sternberg,et al.  The discovery of processing stages: Extensions of Donders' method , 1969 .