Repeated local operations and associated interpolation properties of dual 2n-point subdivision schemes
暂无分享,去创建一个
[1] Rabia Hameed,et al. Families of univariate and bivariate subdivision schemes originated from quartic B-spline , 2017, Adv. Comput. Math..
[2] M. Sabin,et al. NURBS with extraordinary points: high-degree, non-uniform, rational subdivision schemes , 2009, SIGGRAPH 2009.
[3] Kai Hormann,et al. Polynomial reproduction for univariate subdivision schemes of any arity , 2011, J. Approx. Theory.
[4] Chongyang Deng,et al. Repeated local operations for m-ary 2N-point Dubuc-Deslauriers subdivision schemes , 2016, Comput. Aided Geom. Des..
[5] Ulrich Reif,et al. Generalized Lane-Riesenfeld algorithms , 2013, Comput. Aided Geom. Des..
[6] Kai Hormann,et al. Pseudo‐Spline Subdivision Surfaces , 2014, Comput. Graph. Forum.
[7] Nira Dyn,et al. Polynomial reproduction by symmetric subdivision schemes , 2008, J. Approx. Theory.
[8] Richard F. Riesenfeld,et al. A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[9] Malcolm Sabin,et al. Recent Progress in Subdivision: a Survey , 2005, Advances in Multiresolution for Geometric Modelling.
[10] Neil A. Dodgson,et al. A symmetric, non-uniform, refine and smooth subdivision algorithm for general degree B-splines , 2009, Comput. Aided Geom. Des..
[11] George Merrill Chaikin,et al. An algorithm for high-speed curve generation , 1974, Comput. Graph. Image Process..
[12] Weiyin Ma,et al. A generalized curve subdivision scheme of arbitrary order with a tension parameter , 2010, Comput. Aided Geom. Des..
[13] Zuowei Shen,et al. PSEUDO-SPLINES, WAVELETS AND FRAMELETS , 2007 .
[14] D. Zorin,et al. A unified framework for primal/dual quadrilateral subdivision schemes , 2001 .
[15] Weiyin Ma,et al. A unified interpolatory subdivision scheme for quadrilateral meshes , 2013, TOGS.
[16] Jörg Peters,et al. Subdivision Surfaces , 2002, Handbook of Computer Aided Geometric Design.
[17] C. Conti,et al. Dual univariate m-ary subdivision schemes of de Rham-type , 2013 .
[18] Hartmut Prautzsch,et al. Smoothness of subdivision surfaces at extraordinary points , 1998, Adv. Comput. Math..
[19] Ron Goldman,et al. Non-uniform subdivision for B-splines of arbitrary degree , 2009, Comput. Aided Geom. Des..
[20] Joe Warren,et al. Subdivision Methods for Geometric Design: A Constructive Approach , 2001 .
[21] Lucia Romani,et al. A Chaikin-based variant of Lane-Riesenfeld algorithm and its non-tensor product extension , 2015, Comput. Aided Geom. Des..
[22] J. Stam. On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree , 2001 .
[23] D. Levin,et al. Subdivision schemes in geometric modelling , 2002, Acta Numerica.
[24] Peter Schröder,et al. Composite primal/dual -subdivision schemes , 2003, Comput. Aided Geom. Des..
[25] A. Levin,et al. Polynomial generation and quasi-interpolation in stationary non-uniform subdivision , 2003, Comput. Aided Geom. Des..