Repeated local operations and associated interpolation properties of dual 2n-point subdivision schemes

Abstract In this paper we first derive a recursive relation of the generating functions of a family of dual 2 n -point subdivision schemes. Based on the recursive relation we design repeated local operations for implementing the 2 n -point subdivision schemes. Associated interpolation properties of the limit curve sequence of the dual 2 n -point subdivision schemes when n tends to infinity are then investigated. Based on the repeated local operations, we further prove that the limit curves of the family of the dual 2 n -point subdivision scheme sequence approach a circle that interpolates all initial control points as n approaches infinity, provided that the initial control points form a regular control polygon. Other interpolation properties show that the limit curve interpolates all closed initial control points with odd points or with even points but satisfying an extra condition, and interpolates all newly inserted vertices of an original closed polygon, when n approaches infinity. Some numerical examples are provided to illustrate the validity of our theoretic analyses.

[1]  Rabia Hameed,et al.  Families of univariate and bivariate subdivision schemes originated from quartic B-spline , 2017, Adv. Comput. Math..

[2]  M. Sabin,et al.  NURBS with extraordinary points: high-degree, non-uniform, rational subdivision schemes , 2009, SIGGRAPH 2009.

[3]  Kai Hormann,et al.  Polynomial reproduction for univariate subdivision schemes of any arity , 2011, J. Approx. Theory.

[4]  Chongyang Deng,et al.  Repeated local operations for m-ary 2N-point Dubuc-Deslauriers subdivision schemes , 2016, Comput. Aided Geom. Des..

[5]  Ulrich Reif,et al.  Generalized Lane-Riesenfeld algorithms , 2013, Comput. Aided Geom. Des..

[6]  Kai Hormann,et al.  Pseudo‐Spline Subdivision Surfaces , 2014, Comput. Graph. Forum.

[7]  Nira Dyn,et al.  Polynomial reproduction by symmetric subdivision schemes , 2008, J. Approx. Theory.

[8]  Richard F. Riesenfeld,et al.  A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Malcolm Sabin,et al.  Recent Progress in Subdivision: a Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[10]  Neil A. Dodgson,et al.  A symmetric, non-uniform, refine and smooth subdivision algorithm for general degree B-splines , 2009, Comput. Aided Geom. Des..

[11]  George Merrill Chaikin,et al.  An algorithm for high-speed curve generation , 1974, Comput. Graph. Image Process..

[12]  Weiyin Ma,et al.  A generalized curve subdivision scheme of arbitrary order with a tension parameter , 2010, Comput. Aided Geom. Des..

[13]  Zuowei Shen,et al.  PSEUDO-SPLINES, WAVELETS AND FRAMELETS , 2007 .

[14]  D. Zorin,et al.  A unified framework for primal/dual quadrilateral subdivision schemes , 2001 .

[15]  Weiyin Ma,et al.  A unified interpolatory subdivision scheme for quadrilateral meshes , 2013, TOGS.

[16]  Jörg Peters,et al.  Subdivision Surfaces , 2002, Handbook of Computer Aided Geometric Design.

[17]  C. Conti,et al.  Dual univariate m-ary subdivision schemes of de Rham-type , 2013 .

[18]  Hartmut Prautzsch,et al.  Smoothness of subdivision surfaces at extraordinary points , 1998, Adv. Comput. Math..

[19]  Ron Goldman,et al.  Non-uniform subdivision for B-splines of arbitrary degree , 2009, Comput. Aided Geom. Des..

[20]  Joe Warren,et al.  Subdivision Methods for Geometric Design: A Constructive Approach , 2001 .

[21]  Lucia Romani,et al.  A Chaikin-based variant of Lane-Riesenfeld algorithm and its non-tensor product extension , 2015, Comput. Aided Geom. Des..

[22]  J. Stam On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree , 2001 .

[23]  D. Levin,et al.  Subdivision schemes in geometric modelling , 2002, Acta Numerica.

[24]  Peter Schröder,et al.  Composite primal/dual -subdivision schemes , 2003, Comput. Aided Geom. Des..

[25]  A. Levin,et al.  Polynomial generation and quasi-interpolation in stationary non-uniform subdivision , 2003, Comput. Aided Geom. Des..