Metastability of finite state Markov chains: a recursive procedure to identify slow variables for model reduction

Consider a sequence $(\eta^N(t) :t\ge 0)$ of continuous-time, irreducible Markov chains evolving on a fixed finite set $E$, indexed by a parameter $N$. Denote by $R_N(\eta,\xi)$ the jump rates of the Markov chain $\eta^N_t$, and assume that for any pair of bonds $(\eta,\xi)$, $(\eta',\xi')$ $\arctan \{R_N(\eta,\xi)/R_N(\eta',\xi')\}$ converges as $N\uparrow\infty$. Under a hypothesis slightly more restrictive (cf. \eqref{mhyp} below), we present a recursive procedure which provides a sequence of increasing time-scales $\theta^1_N, \dots, \theta^{\mf p}_N$, $\theta^j_N \ll \theta^{j+1}_N$, and of coarsening partitions $\{\ms E^j_1, \dots, \ms E^j_{\mf n_j}, \Delta^j\}$, $1\le j\le \mf p$, of the set $E$. Let $\phi_j: E \to \{0,1, \dots, \mf n_j\}$ be the projection defined by $ \phi_j(\eta) = \sum_{x=1}^{\mf n_j} x \, \mb 1\{\eta \in \ms E^j_x\}$. For each $1\le j\le \mf p$, we prove that the hidden Markov chain $X^j_N(t) = \phi_j(\eta^N(t\theta^j_N))$ converges to a Markov chain on $\{1, \dots, \mf n_j\}$.

[1]  A. Bovier Metastability: A Potential-Theoretic Approach , 2016 .

[2]  Evolution of the ABC model among the segregated configurations in the zero-temperature limit , 2014, 1403.4981.

[3]  Alessandra Bianchi,et al.  Metastable states, quasi-stationary distributions and soft measures , 2011, 1103.1143.

[4]  Metastability for General Dynamics with Rare Transitions: Escape Time and Critical Configurations , 2014, 1412.7923.

[5]  E. Scoppola,et al.  Conditioned, quasi-stationary, restricted measures and escape from metastable states , 2014, 1410.4814.

[6]  P. Chleboun,et al.  A dynamical transition and metastability in a size-dependent zero-range process , 2014, 1408.6864.

[7]  E. Scoppola,et al.  Asymptotically exponential hitting times and metastability: a pathwise approach without reversibility , 2014, 1406.2637.

[8]  Eric Vanden-Eijnden,et al.  Exact dynamical coarse-graining without time-scale separation. , 2014, The Journal of chemical physics.

[9]  Eric Vanden-Eijnden,et al.  Flows in Complex Networks: Theory, Algorithms, and Application to Lennard–Jones Cluster Rearrangement , 2014, ArXiv.

[10]  Luca Avena,et al.  Random spanning forests, Markov matrix spectra and well distributed points , 2013, 1310.1723.

[11]  C. Landim,et al.  Hitting Times of Rare Events in Markov Chains , 2013 .

[12]  A topology for limits of Markov chains , 2013, 1310.3646.

[13]  A. Gaudilliere,et al.  On some random forests with determinantal roots , 2013 .

[14]  C. Maes,et al.  A Low Temperature Analysis of the Boundary Driven Kawasaki Process , 2013, 1306.1775.

[15]  A Martingale approach to metastability , 2013, 1305.5987.

[16]  Tomasz Komorowski,et al.  Fluctuations in Markov Processes: Time Symmetry and Martingale Approximation , 2012 .

[17]  C. Landim,et al.  Tunneling and Metastability of Continuous Time Markov Chains II, the Nonreversible Case , 2012, 1205.0445.

[18]  C. Landim Metastability for a Non-reversible Dynamics: The Evolution of the Condensate in Totally Asymmetric Zero Range Processes , 2012, 1204.5987.

[19]  C. Landim,et al.  A Dirichlet principle for non reversible Markov chains and some recurrence theorems , 2011, 1111.2445.

[20]  D. Gabrielli,et al.  Which random walks are cyclic , 2011, 1107.5336.

[21]  Claudio Landim,et al.  Metastability of reversible finite state Markov processes , 2010 .

[22]  C. Landim,et al.  Tunneling and Metastability of Continuous Time Markov Chains , 2009, 0910.4088.

[23]  Amit Singer,et al.  Detecting intrinsic slow variables in stochastic dynamical systems by anisotropic diffusion maps , 2009, Proceedings of the National Academy of Sciences.

[24]  Eric Vanden-Eijnden,et al.  Transition Path Theory for Markov Jump Processes , 2009, Multiscale Model. Simul..

[25]  W. E,et al.  Towards a Theory of Transition Paths , 2006 .

[26]  E. Olivieri,et al.  Large deviations and metastability , 2005 .

[27]  Francesca R. Nardi,et al.  On the Essential Features of Metastability: Tunnelling Time and Critical Configurations , 2004 .

[28]  MARKOV CHAINS WITH EXPONENTIALLY SMALL TRANSITIONPROBABILITIES : FIRST EXIT PROBLEM FROM A GENERAL DOMAINI , 1996 .

[29]  Elisabetta Scoppola,et al.  Markov chains with exponentially small transition probabilities: First exit problem from a general domain. II. The general case , 1995 .

[30]  E. Olivieri,et al.  Markov chains with exponentially small transition probabilities: First exit problem from a general domain. I. The reversible case , 1995 .

[31]  Elisabetta Scoppola Renormalization group for Markov chains and application to metastability , 1993 .

[32]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .