Feature Selection via Sensitivity Analysis with Direct Kernel PLS

This chapter introduces Direct Kernel Partial Least Squares (DK-PLS) and feature selection via sensitivity analysis for DK-PLS. The overall feature selection strategy for the five data sets used in the NIPS competition is outlined as well.

[1]  Jinbo Bi,et al.  Regression Error Characteristic Curves , 2003, ICML.

[2]  H. Wold Path Models with Latent Variables: The NIPALS Approach , 1975 .

[3]  Nello Cristianini,et al.  An introduction to Support Vector Machines , 2000 .

[4]  Euan A. Ashley,et al.  Better Decisions Through Science: Exercise Testing Scores , 2002 .

[5]  John Hulland,et al.  Use of partial least squares (PLS) in strategic management research: a review of four recent studies , 1999 .

[6]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machines , 2002 .

[7]  S. Keerthi,et al.  SMO Algorithm for Least-Squares SVM Formulations , 2003, Neural Computation.

[8]  Robert H. Kewley,et al.  Data strip mining for the virtual design of pharmaceuticals with neural networks , 2000, IEEE Trans. Neural Networks Learn. Syst..

[9]  Richard S. Sutton,et al.  Reinforcement learning with replacing eligibility traces , 2004, Machine Learning.

[10]  Roman Rosipal,et al.  Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space , 2002, J. Mach. Learn. Res..

[11]  A. E. Hoerl,et al.  Ridge Regression: Applications to Nonorthogonal Problems , 1970 .

[12]  Johan A. K. Suykens,et al.  Support Vector Machines : Least Squares Approaches and Extensions , 2003 .

[13]  Shouxin Ren,et al.  Simultaneous spectrophotometric determination of manganese, zinc and cobalt by kernel partial least–squares method , 1998, The Journal of automatic chemistry.

[14]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[15]  Alexander J. Smola,et al.  Learning with Kernels: support vector machines, regularization, optimization, and beyond , 2001, Adaptive computation and machine learning series.

[16]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[17]  S. Wold,et al.  PLS-regression: a basic tool of chemometrics , 2001 .

[18]  Ilse C. F. Ipsen,et al.  THE IDEA BEHIND KRYLOV METHODS , 1998 .

[19]  J A Swets,et al.  Better decisions through science. , 2000, Scientific American.

[20]  Svante Wold,et al.  Personal memories of the early PLS development , 2001 .

[21]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .

[22]  Shouxin Ren,et al.  Simultaneous spectrophotometric determination of four metals by the kernel partial least squares method , 1999 .

[23]  S. Wold,et al.  The kernel algorithm for PLS , 1993 .

[24]  Kristin P. Bennett,et al.  An Optimization Perspective on Kernel Partial Least Squares Regression , 2003 .

[25]  Shouxin Ren,et al.  Simultaneous spectrophotometric determination of copper(II), lead(II) and cadrnium(II) , 1995, The Journal of automatic chemistry.

[26]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[27]  Johan A. K. Suykens,et al.  Advances in learning theory : methods, models and applications , 2003 .

[28]  A. Tropsha,et al.  Beware of q2! , 2002, Journal of molecular graphics & modelling.